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Abstract 

I present a theory of mean field approximation based on information ge­
ometry. This theory includes in a consistent way the naive mean field 
approximation, as well as the TAP approach and the linear response the­
orem in statistical physics, giving clear information-theoretic interpreta­
tions to them. 

1 INTRODUCTION 

Many problems of neural networks, such as learning and pattern recognition, can be cast 
into a framework of statistical estimation problem. How difficult it is to solve a particular 
problem depends on a statistical model one employs in solving the problem. For Boltzmann 
machines[ 1] for example, it is computationally very hard to evaluate expectations of state 
variables from the model parameters. 

Mean field approximation[2], which is originated in statistical physics, has been frequently 
used in practical situations in order to circumvent this difficulty. In the context of statistical 
physics several advanced theories have been known , such as the TAP approach[3], linear 
response theorem[4], and so on. For neural networks, application of mean field approxi­
mation has been mostly confined to that of the so-called naive mean field approximation, 
but there are also attempts to utilize those advanced theories[5, 6, 7, 8] . 

In this paper I present an information-theoretic formulation of mean field approximation. It 
is based on information geometry[9], which has been successfully applied to several prob­
lems in neural networks[ 1 0]. This formulation includes the naive mean field approximation 
as well as the advanced theories in a consistent way. I give the formulation for Boltzmann 
machines, but its extension to wider classes of statistical models is possible, as described 
elsewhere[ 11 ]. 

2 BOLTZMANN MACHINES 

A Boltzmann machine is a statistical model with N binary random variables Si E {-I, I}, 
i = 1, ... , N. The vector s = (s}, . .. , S N) is called the state of the Boltzmann machine. 
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The state s is also a random variable, and its probability law is given by the Boltzmann­
Gibbs distribution 

p(s) = e-E (s)-1/J(p) , 

where E( s) is the "energy" defined by 

E(s) = - 2: hisi - 2: w ij SiSj 
(ij) 

(I) 

(2) 

with hi and w ij the parameters, and -1jJ(p) is determined by the normalization condition 
and is called the Helmholtz free energy of p. The notation (ij) means that the summation 
should be taken over all distinct pairs. 

Let 'fJi(P) == (Si}p and 'fJij(p) == (SiSj}p, where (.}p means the expectation with respect to 
p. The following problem is essential for Boltzmann machines: 

Problem 1 Evaluate the expectations '1Ji (p) and 'fJij (p) from the parameters hi and wij of 
the Boltzmann machine p. 

3 INFORMATION GEOMETRY 

3.1 ORTHOGONAL DUAL FOLIATIONS 

A whole set M of the Boltzmann-Gibbs distribution (1) realizable by a Boltzmann machine 
is regarded as an exponential family. Let us use shorthand notations I, J, ... , to represent 
distinct pairs of indices, such as ij. The parameters hi and wI constitute a coordinate 
system of M, called the canonical parameters of M. The expectations "Ii and 'f/I constitute 
another coordinate system of M, called the expectation parameters of M. 

Let Fo be a subset of M on which wI are all equal to zero. I call Fo the factorizable 
submodel of M since p(s) E Fo can be factorized with respect to Si. On Fo the problem 
is easy: Since wI are all zero, Si are statistically independent of others, and therefore 
'fJi = tanh - 1 hi and 'fJij = 'fJi'fJj hold. 

Mean field approximation systematically reduces the problem onto the factorizable sub­
model Fo. For this reduction, I introduce dual foliations F and A onto M. The foliation 
F = {F(w)}, M = Uw F(w), is parametrized by w == (wI) and each leaf F(w) is 
defined as 

F(w) = {p(s) I wI (p) = wI}. (3) 

The leaf F(O) is the same as Fo, the factorizable submodel. Each leaf F( w) is again an 
exponential family with hi and 'fJi the canonical and the expectation parameters, respec­
tively. A pair of dual potentials is defined on each leaf, one is the Helmholtz free energy 
1/J(p) == 1jJ(p) and another is its Legendre transform, or the Gibbs free energy, 

(4) 

and the parameters of p E F( w) are given by 

'fJi(P) = ()i1/J(p), hi(p) = ()i¢>(p), (5) 

where {)i == ({)/{)hi ) and {)i ::::i (()/{)'fJi). Another foliation A {A(m)}, M = 
Urn A( m), is parametrized by m == (md and each leaf A( m) is defined as 

A(m) = {p(s) I 'fJi(P) = mi}. (6) 
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Each leaf A(m) is not an exponential family, but again a pair of dual potentials."b and ¢ is 
defined on each leaf, the former is given by 

(7) 

and the latter by its Legendre transform as 

¢(p) = L wI (p)1]I(p) - ."b(p), (8) 
I 

and the parameters of P E A(m) are given by 

1JI(p) = fh."b(p), wI (p) = al ¢(p), (9) 

where al = (a/awl) and al = (a / a1JI). These two foliations form the orthogonal dual 
foliations, since the leaves F{w) and A(m) are orthogonal at their intersecting point. I 
introduce still another coordinate system on M, called the mixed coordinate system, on 
the basis of the orthogonal dual foliations. It uses a pair (m, w) of the expectation and 
the canonical parameters to specify a single element p EM. The m part specifies the leaf 
A(m) on which p resides, and the w part specifies the leaf F(w). 

3.2 REFORMULATION OF PROBLEM 

Assume that a target Boltzmann machine q is given by specifying its parameters hi (q) and 
wI (q). Problem I is restated as follows: evaluate its expectations 1Ji(q) and 1JI(q) from 
those parameters. To evaluate 1Ji mean field approximation translates the problem into the 
following one: 

Problem 2 Let F( w) be a leaf on which q resides. Find p E F{ w) which is the closest 
to q. 

At first sight this problem is trivial, since one immediately finds the solution p = q. How­
ever, sol ving this problem with respect to TJi (p) is nontrivial, and it is the key to understand­
ing of mean field approximation including advanced theories. 

Let us measure the proximity of p to q by the Kullback divergence 

D{pllq) = LP{s) log :~:~, 
s 

(10) 

then solving Problem 2 reduces to finding a minimizer p E F{w) of D{pllq) for a given q. 
For p, q E F(w), D{pllq) is expressed in terms of the dual potentials",& and ¢ of F(w) as 

(11 ) 

The minimization problem is thus equivalent to minimizing 

( 12) 

since ",&{q) in eq. (11) does not depend on p. Solving the stationary condition EfG{p) = 0 
with respect to 1Ji(P) will give the correct expectations 1Ji{q), since the true minimizer is 

p = q. However, the scenario is in general intractable since¢{p) cannot be given explicitly 
as a function of 1Ji{P). 
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3.3 PLEFKA EXPANSION 

The problem is easy if wI = O. In this case ¢(p) is given explicitly as a function of 
mi == 7]i(p) as 

- 1 '" [ 1 + mi 1 - mi] </>(p) = "2 ~ (1 + mi) log 2 + (1 - md log 2 . 
i 

(13) 

Minimization of G(p) with respect to mi gives the solution mi = tanh hi as expected. 
When wI 1= 0 the expression (13) is no longer exact, but to compensate the error one may 
use, leaving convergence problem aside, the Taylor expansion of¢(w) == ¢(p) with respect 
to w = 0, 

¢(w) ¢(O) + 2:(ch¢(O))wI + ~ 2:UhaJ¢(O))wI wJ 
1 IJ 

+ ! 2: ({hfhaK¢(O))wlwJwK + .... 
6 IJK 

( 14) 

This expansion has been called the Plefka expansion[ 12] in the literature of spin glasses. 
Note that in considering the expansion one should temporarily assume that m is fixed: One 
can rely on the solution m evaluated from the stationary condition 8G(p) = 0 only if the 
expansion does not change the value of m. 

The coefficients in the expansion can be efficiently computed by fully utilizing the orthog­
onal dual structure of the foliations. First, we have the following theorem: 

Theorem 1 The coefficients o/the expansion (14) are given by the cumulant tensors (l/the 
corresponding orders, dejined on A(m). 

Because ¢ = -;fi holds, one can consider derivatives of;fi instead of those of ¢. The first­
order derivatives aI;fi are immediately given by the property of the potential of the leaf 
A(m) (eq. (9», yielding 

( 15) 

where Po denotes the distribution on A(m) corresponding to w = O. The coefficients of 
the lowest-orders, including the first-order one, are given by the following theorem. 

Theorem 2 The jirst-, second-, and third-order coefficients o/the expansion (14) are given 
by: 

where l == logPo. 

(h;fi(o) 

(h{h;fi(O) 

alaJaK;fi(O) 

T/I(PO) 

((all)(aJl) )po 

((all)(aJl)(aKl) )po (16) 

The proofs will be found in [11]. It should be noted that, although these results happen to 
be the same as the ones which would be obtained by regarding A(m) as an exponential 
family, they are not the same in general since actually A(m) is not an exponential family; 
for example, they are different for the fourth-order coefficients. 

The explicit formulas for these coefficients for Boltzmann machines are given as follows : 

• For the first-order, 
(17) 
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• For the second-order, 

(th )2~(O) = (1 - mr)(1 - m;,) (I = ii'), (18) 

and 
(19) 

• For the third-order, 

(th )3~(O) = 4mimi' (1 - mn(1 - mr,) (I = ii'), (20) 

and for 1 = ij, J = j k, K = ik for three distinct indices i , j, and k, 

(h{h8K~(O) = (1 - m;)(1 - m;)(1 - m~) (21) 

For other combinations of I , J, and K , 

(22) 

4 MEAN FIELD APPROXIMATION 

4.1 MEAN FIELD EQUATION 

Truncating the Plefka expansion (14) up to n-th order term gives n-th order approximations, 
~n (P) and Gn(p) == ~n(P) -L:i hi(q)mi . The Weiss free energy, which is used in the naive 
mean field approximation, is given by ~l (p). The TAP approach picks up all relevant terms 
of the Plefka expansion[ 12], and for the SK model it gives the second-order approximation 

~2(P) . 

The stationary condition 8i Gn (p) = 0 gives the so-called mean field equation, from which 
a solution of the approximate minimization problem is to be determined. For n = 1 it takes 
the following familiar form , 

tanh- 1 mi - hi - 2: wijmj = 0 
# i 

and for n = 2 it includes the so-called On sager reaction term. 

(23) 

tanh- 1 m i - hi - 2: wijmj + 2:(wij )2(1 - m;)mi = 0 (24) 
#i # i 

Note that all of these are expressed as functions of ffii. 

Geometrically, the mean field equation approximately represents the "surface" hf(p) 
hi(q) in terms of the mixed coordinate system of M , since for the exact Gibbs free energy 
G, the stationary condition QiG(p) = 0 gives hi(p) - hi(q) = O. Accordingly, the ap-
proximate relation hi(p) = 8i~n(P), for fixed m, represents the n-th order approximate 
expression of the leaf A(m) in the canonical coordinate system . The fit of this expression 
to the true leaf A( m) around the point w = 0 becomes beller as the order of approximation 
gets higher, as seen in Fig. I. Such a behavior is well expected, since the Plefka expansion 
is essentially a Taylor expansion. 

4.2 LINEAR RESPONSE 

For estimating r/1(p) one can utilize the linear response theorem. In information geomet­
rical framework it is represented as a trivial identity relation for the Fisher information on 
the leaf F( w) . The Fisher information matrix (gij) , or the Riemannian metric tensor, on 
the leaf F(w) , and its inverse (gij) are given by 

(25) 
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Figure I: Approximate expressions of A(m) by mean field approximations of several or­
ders for 2-unit Boltzmann machine, with (ml' m2) = (0.5, 0.5) (left), and their magnified 
view (right). 

Figure 2: Relation between "naive" approximation and present theory. 

and 
(26) 

respectively. In the framework here, the linear response theorem states the trivial fact that 
those are the inverse of the other. In mean field approximation, one substitutes an approxi­
mation ¢n(P) in place of ¢(p) in eq. (26) to get an approximate inverse of the metric (r/j). 
The derivatives in eq . (26) can be analytically calculated, and therefore (rJj) can be numer­
ically evaluated by substituting to it a solution Tni of the mean field equation. Equating its 
inverse to (9ij) gives an estimate of 17ij (p) by using eq. (25). So far, Problem I has been 
sol ved within the framework of mean field approximation, with T1li and 17ij obtained by the 
mean field equation and the linear response theorem, respectively. 

5 DISCUSSION 

Following the framework presented so far, one can in principle construct algorithms of 
mean field approximation of desired orders. The first-order algorithm with linear response 
has been first proposed and examined by Kappen and Rodrfguez[7, 8]. Tanaka[13] has 
formulated second- and third-order algorithms and explored them by computer simulations , 
It is also possible to extend the present formulation so that it can be applicable to higher­
order Boltzmann machines. Tanaka[ 14] discusses an extension of the present formulation 
to third-order Boltzmann machines: It is possible to extend linear response theorem to 
higher-orders, and it allows us to treat higher-order correlations within the framework of 
mean field approximation. 
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The common understanding about the "naive" mean field approximation is that it minimizes 
Kullback divergence D(A>llq) with respect to A> E Fo for a given q. It can be shown that 
this view is consistent with the theory presented in this paper. Assume that q E F( w) 
and Po E A(m), and let p be a distribution corresponding the intersecting point of the 
leaves F(w) and A(m). Because of the orthogonality of the two foliations F and A the 
following "Pythagorean law[9]" holds (Fig. 2). 

D(Pollq) = D(Pollp) + D(pllq) (27) 

Intuitively, D(A> lip) measures the squared distance between F( w) and Fa, and is a second­
order quantity in w. It should be ignored in the first-order approximation, and thus 
D(Pollq) ~ D(pllq) holds. Under this approximation minimization of the former with 
respect to Po is equivalent to that of the latter with respect to p, which establishes the re­
lation between the "naive" approximation and the present theory. It can also be checked 
directly that the first-order approximation of D(pllq) exactly gives D(A>llq), the Weiss free 
energy. 

The present theory provides an alternative view about the validity of mean field approx­
imation: As opposed to a common "belief" that mean field approximation is a good one 
when N is sufficiently large, one can state from the present formulation that it is so when­
ever higher-order contribution of the Plefka expansion vanishes, regardless o/whether N 
is large or not. This provides a theoretical basis for the observation that mean field approx­
imation often works well for small networks. 

The author would like to thank the Telecommunications Advancement Foundation for fi­
nancial support. 
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