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ABSTRACT 
Structure in a visual scene can be described at many levels of granular­
ity. At a coarse level, the scene is composed of objects; at a finer level, 
each object is made up of parts, and the parts of subparts. In this work, I 
propose a simple principle by which such hierarchical structure can be 
extracted from visual scenes: Regularity in the relations among different 
parts of an object is weaker than in the internal structure of a part. This 
principle can be applied recursively to define part-whole relationships 
among elements in a scene. The principle does not make use of object 
models, categories, or other sorts of higher-level knowledge; rather, 
part-whole relationships can be established based on the statistics of a 
set of sample visual scenes. I illustrate with a model that performs unsu­
pervised decomposition of simple scenes. The model can account for 
the results from a human learning experiment on the ontogeny of part­
whole relationships. 

1 INTRODUCTION 
The structure in a visual scene can be described at many levels of granularity. Con­

sider the scene in Figure I a. At a coarse level, the scene might be said to consist of stick 
man and stick dog. However, stick man and stick dog themselves can be decomposed fur­
ther. One might describe stick man as having two components, a head and a body. The 
head in turn can be described in terms of its parts: the eyes, nose, and mouth. This sort of 
scene decomposition can continue recursively down to the level of the primitive visual fea­
tures. Figure I b shows a partial decomposition of the scene in Figure I a. 

A scene decomposition establishes part-whole relationships among objects. For 
example, the mouth (a whole) consists of two parts, the teeth and the lips. If we assume 
that any part can belong to only one whole, the decomposition imposes a hierarchical 
structure over the elements in the scene. 

Where does this structure come from? What makes an object an object, a part a part? 
I propose a simple principle by which such hierarchical structure can be extracted from 
visual scenes and incorporate the principle in a simulation model. The principle is based 
on the statistics of the visual environment, not on object models or other sorts of higher­
level knowledge, or on a teacher to classify objects or their parts. 
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2 WHAT MAKES A PART A PART? 

Parts combine to form objects. Parts are combined in different ways to form different 
objects and different instances of an object. Consequently, the structural relations among 
different parts of an object are less regular than is the internal structure of a part. To illus­
trate, consider Figure 2, which depicts four instances of a box shell and lid. The compo­
nents of the lid-the top and the handle-appear in a regular configuration, as do the 
components of the shell-the sides and base-but the relation of the lid to the shell is vari­
able. Thus, configural regularity is an indication that components should be grouped 
together to form a unit. I call this the regularity principle. Other variants of the regularity 
principle have been suggested by Becker (1995) and Tenenbaum (1994). 

The regularity depicted in Figure 2 is quite rigid: one component of a part always 
occurs in a fixed spatial position relative to another. The regularity principle can also be 
cast in terms of abstract relationships such as containment and encirclement. The only dif­
ference is the featural representation that subserves the regularity discovery process. In 
this paper, however, I address primarily regularities that are based on physical features and 
fixed spatial relationships. Another generalization of the regularity principle is that it can 
be applied recursively to suggest not only parts of wholes, but subparts of parts . 

According to the regularity principle, information is implicit in the environment that 
can be used to establish part-whole relationships. This information comes in the form of 
statistical regularities among features in a visual scene. The regularity principle does not 
depend on explicit labeling of parts or objects. 

In contrast, Schyns and Murphy (1992, 1993) have suggested a theory of part ontog­
eny that presupposes explicit categorization of objects. They propose a homogeneity prin­
ciple which states that "if a fragment of a stimulus plays a consistent role in 
categorization, the perceptual parts composing the fragment are instantiated as a single 
unit in the stimulus representation in memory." Their empirical studies with human sub­
jects find support for the homogeneity principle. 

Superficially, the homogeneity and regularity principles seem quite different: while 
the homogeneity principle applies to supervised category learning (i.e., with a teacher to 
classify instances), the regularity principle applies to unsupervised discovery. But it is pos­
sible to transform one learning paradigm into the other. For example, in a category learn­
ing task, if only one category is to be learned and if the training examples are all positive 
instances of the category, then inducing the defining characteristics of the category is 
equivalent to extracting regularities in the stimulus environment. Thus, category learning 
in a diverse stimulus environment can be conceptualized as unsupervised regularity 
extraction in multiple, narrow stimulus environments (each environment being formed by 
taking all positive instances of a given class). 

(a) (b) scene 

~ 
stick man stick dog 

~ 
head body 

~ ~ 
eyes nose mouth arm torso leg 

~ 
lips teeth 

FIGURE 1. (a) A graphical depiction of stick man and his faithful companion, stick dog; (b) a 
partial decomposition of the scene into its parts. 

FIGURE 2. Four different instances of a box with a lid 
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There are several other differences between the regularity principle proposed here 
and the homogeneity principle of Schyns and Murphy, but they are minor. Schyns and 
Murphy seem to interpret "fragment" more narrowly as spatially contiguous perceptual 
features. They also don't address the hierarchical nature of part-whole relationships. 
Nonetheless, the two principles share the notion of using the statistical structure of the 
visual environment to establish part-whole relations. 

3 A FLAT REPRESENTATION OF STRUCTURE 
I have incorporated the regularity principle into a neural net that discovers part­

whole relations in its environment. Neural nets, having powerful learning paradigms for 
unsupervised discovery, are well suited for this task. However, they have a fundamental 
difficulty representing complex, articulated data structures of the sort necessary to encode 
hierarchies (but see Pollack, 1988, and Smolensky, 1990, for promising advances). I thus 
begin by describing a novel representation scheme for hierarchical structures that can 
readily be integrated into a neural net. 

The tree structure in Figure I b depicts one representation of a hierarchical decompo­
sition. The complete tree has as its leaf nodes the primitive visual features of the scene. 
The tree specifies the relationships among the visual features. There is another way of cap­
turing these relationships, more connectionist in spirit than the tree structure. The idea is 
to assign to each primitive feature a tag-a scalar in [0, I)-such that features within a 
subtree have similar values. For the features of stick man, possible tags might be: eyes .1, 
nose .2, lips .28, teeth .32, arm .6, torso .7, leg .8. 

Denoting the set of all features having tags in [a, ~] by Sea, ~), one can specify any 
subtree of the stick man representation. For example, S(O, 1) includes all features of stick 
man; S(0,.5) includes all features in the subtree whose root is stick man's head, S(.5,I) his 
body; S(.25,.35) indicates the parts of the mouth. By a simple algorithm, tags can be 
assigned to the leaf nodes of any tree such that any subtree can be selected by specifying 
an appropriate tag range. The only requirement for this algorithm is knowledge of the 
maximum branching factor. There is no fixed limit to the depth of the tree that can be thus 
represented; however, the deeper the tree, the finer the tag resolution that wiII be needed. 

The tags provide a "flat" way of representing hierarchical structure. Although the 
tree is implicit in the representation, the tags convey all information in the tree, and thus 
can capture complex, articulated structures. The tags in fact convey additional informa­
tion. For example in the above feature list, note that lips is closer to nose than teeth is to 
nose. This information can easily be ignored, but it is still worth observing that the tags 
carry extra baggage not present in the symbolic tree structure. 

It is convenient to represent the tags on a range [0, 21t) rather than [0, I]. This allows 
the tag to be identified with a directional-or angular-value. Viewed as part of a cyclic 
continuum, the directional tags are homogeneous, in contrast to the linear tags where tags 
near ° and 1 have special status by virtue of being at endpoints of the continuum. Homo­
geneity results in a more elegant model, as described below. 

The directional tags also permit a neurophysiological interpretation, albeit specula­
tive. It has been suggested that synchronized oscillatory activities in the nervous system 
can be used to convey information above and beyond that contained in the average firing 
rate of individual neurons (e.g., Eckhorn et aI., 1988; Gray et aI., 1989; von der Malsburg, 
1981). These osciIIations vary in their phase, the relative offset of the bursts. The direc­
tional tags could map directly to phases of oscillations, providing a means of implement­
ing the tagging in neocortex. 

4 REGULARITY DISCOVERY 
Many learning paradigms allow for the djscovery of regUlarity. I have used an 

autoencoder architecture (Plaut, Nowlan, & Hinton, 1986) that maps an input pattern-a 
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representation of visual features in a scene-to an output pattern via a small layer of hid­
den units. The goal of this type of architecture is for the network to reproduce the input 
pattern over the output units. The task requires discovery of regularities because the hid­
den layer serves as an encoding bottleneck that limits the representational capacity of the 
system. Consequently, stronger regularities (the most common patterns) will be encoded 
over the weaker. 

5 MAGIC 
We now need to combine the autoencoder architecture with the notion of tags such 

that regularity of feature configurations in the input will increase the likelihood that the 
features will be assigned the same tags. 

This goal can be achieved using a model we developed for segmenting an image into 
different objects using supervised learning. The model, MAGIC (Mozer, Zemel, Behr­
mann, & Williams, 1992), was trained on images containing several visual objects and its 
task was to tag features according to which object they belonged. A teacher provided the 
target tags. Each unit in MAGIC conveys two distinct values: a probability that a feature is 
present, which I will call the feature activity, and a tag associated with the feature. The tag 
is a directional (angular) value, of the sort suggested earlier. (The tag representation is in 
reality a complex number whose direction corresponds to the directional value and whose 
magnitude is related to the unit's confidence in the direction. As this latter aspect of the 
representation is not central to the present work, I discuss it no further.) 

The architecture is a two layer recurrent net. The input or feature layer is set of spa­
tiotopic arrays-in most simulations having dimensions 25x25-each array containing 
detectors for features of a given type: oriented line segments at 0 0 ,450 ,900

, and 135 0
• In 

addition, there is a layer of hidden units. Each hidden unit is reciprocally connected to 
input from a local spatial patch of the input array; in the current simulations, the patch has 
dimensions 4x4. For each patch there is a corresponding fixed-size pool of hidden units. 
To achieve a translation invariant response across the image, the pools are arranged in a 
spatiotopic array in which neighboring pools respond to neighboring patches and the 
patch-to-pool weights are constrained to be the same at all locations in the array. There are 
interlayer connections, but no intralayer connections. 

The images presented to MAGIC consist of an arrangement of features over the input 
array. The feature activity is clamped on (i.e., the feature is present), and the initial direc­
tional tag of the feature is set at random. Feature unit activities and tags feed to the hidden 
units, which in turn feed back to the feature units. Through a relaxation process, the sys­
tem settles on an assignment of tags to the feature units (as well as to the hidden units, 
although read out from the model concerns only the feature units). MAGIC is a mean-field 
approximation to a stochastic network of directional units with binary-gated outputs 
(Zemel, Williams, & Mozer, 1995). This means that a mean-field energy functional can be 
written that expresses the network state and controls the dynamics; consequently, MAGIC 
is guaranteed to converge to a stable pattern of tags. 

Each hidden unit detects a spatially local configuration offeatures, and it acts to rein­
state a pattern of tags over the configuration. By adjusting its incoming and outgoing 
weights during training, the hidden unit is made to respond to configurations that are con­
sistently tagged in the training set. For example, if the training set contains many corner 
junctions where horizontal and vertical lines come to a point and if the teacher tags all fea­
tures composing these lines as belonging to the same object, then a hidden unit might 
learn to detect this configuration, and when it does so, to force the tags of the component 
features to be the same. 

In our earlier work, MAGIC was trained to map the feature activity pattern to a target 
pattern of feature tags, where there was a distinct tag for each object in the image. In the 
present work, the training objective is rather to impose uniform tags over the features. 
Additionally, the training objective encourages MAGIC to reinstate the feature activity 
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FIGURE 3. The state of MAGIC as processing proceeds for an image composed of a pair of 
lines made out of horizontal and vertical line segments. The coloring of a segment represents 
the directional tag. The segments belonging to a line are randomly tagged initially; over 
processing iterations, these tags are brought into alignment. 

pattern over the feature units; that is, the hidden units must encode and propagate informa­
tion back to the feature units that is sufficient to specify the feature activities (if the feature 
activities weren't clamped). With this training criterion, MAGIC becomes a type of 
autoencoder. The key property of MAGIC is that it can assign a feature configuration the 
same tag only if it learns to encode the configuration. If an arrangement is not encoded, 
there will be no force to align the feature tags. Further, fixed weak inhibitory connections 
between every pair of feature units serve to spread the tags apart if the force to align them 
is not strong enough. 

Note that this training paradigm does not require a teacher to tag features as belong­
ing to one part or another. MAGIC will try to tag all features as belonging to the same part, 
but it is able to do so only for configurations of features that it is able to encode. Conse­
quently, highly regular and recurring configurations will be grouped together, and irregular 
configurations will be pulled apart. The strength of grouping will be proportional to the 
degree of regularity. 

6 SIMULATION EXPERIMENTS 
To illustrate the behavior of the model, I show a simple simulation in which MAGIC 

is trained on pairs of lines, one vertical and one horizontal. Each line is made up of 6 
colinear line segments. The segments are primitive input features of the model. The two 
lines may appear in different positions relative to one another. Hence, the strongest regu­
larity is in the segments that make up a line, not the junction between the lines. When 
trained with two hidden units, MAGIC has sufficient resources to encode the structure 
within each line, but not the relationships among the lines; because this structure is not 
encoded, the features of the two lines are not assigned the same tags (Figure 3). 

Although each "part" is made up of features having a uniform orientation and in a 
colinear arrangement, the composition and structure of the parts is immaterial; MAGIC's 
performance depends only on the regularity of the configurations. In the next set of simu­
lations, MAGIC discovers regularities of a more arbitrary nature. 

6.1 MODELING HUMAN LEARNING OF PART-WHOLE RELATIONS 

Schyns and Murphy (1992) studied the ontogeny of part-whole relationships by 
training human subjects on a novel class of objects and then examining how the subjects 
decomposed the objects into their parts. I briefly describe their experiment, followed by a 
simulation that accounts for their results. 

In the first phase of the experiment, subjects were shown 3-D gray level "martian 
rocks" on a CRT screen. The rocks were constructed by deforming a sphere, resulting in 
various bumps or protrusions. Subjects watched the rocks rotating on the screen, allowing 
them to view the rock from all sides. Subjects were shown six instances, all of which were 
labeled "M 1 rocks" and were then tested to determine whether they could distinguish M 1 
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rocks from other rocks. Subjects continued training until they performed correctly on this 
task. Every Ml rock was divided into octants; the protrusions on seven of the octants were 
generated randomly, and the protrusions on the last octant were the same for all Ml rocks. 
Two groups of subjects were studied. The A group saw M I rocks all having part A, the B 
group saw M 1 rocks all having part B. Following training, subjects were asked to delin­
eate the parts they thought were important on various exemplars. Subjects selected the tar­
get part from the category on which they were trained 93% of the time, and the alternative 
target-the target from the other category-only 8% of the time, indicating that the learn­
ing task made a part dramatically more salient. 

To model this phase of the experiment, I generated two dimensional contours of the 
same flavor as Schyns and Murphy's martian rocks (Figure 4). Each rock-can it a "venu­
sian rock" for distinction-can be divided into four quadrants or parts. Two groups of 
venusian rocks were generated. Rocks of category A an contained part A (left panel, Fig­
ure 4), rocks of category B contained part B (center panel, Figure 4). One network was 
trained on six exemplars of category A rocks, another network was trained on six exem­
plars of category B rocks. Then, with learning turned off, both networks were tested on 
five presentations each of twelve new exemplars, six each of categories A and B. 

Just as the human subjects were instructed to delineate parts, we must ask MAGIC to 
do the same. One approach would be to run the model with a test stimulus and, once it set­
tles, select an features having directional tags clustered tightly together as belonging to the 
same part. However, this requires specifying and tuning a clustering procedure. To avoid 
this additional step, I simply compared how tightly clustered were the tags of the target 
part relative to those of the alternative target. I used a directional variance measure that 
yields a value of 0 if all tags are identical and I if the tags are distributed uniformly over 
the directional spectrum. By this measure, the variance was .30 for the target part and .68 
for the alternative target (F(l, 118) = 322.0, P < .001), indicating that the grouping of fea­
tures of the target part was significantly stronger. This replicates, at least qualitatively, the 
finding of Schyns and Murphy. 

In a second phase of Schyns and Murphy's experiment, subjects were trained on cat­
egory C rocks, which were formed by adjoining parts A and B and generating the remain­
ing six octants at random. Following training, subjects were again asked to delineate parts. 
All subjects delineated A and B as distinct parts. In contrast, a naive group of subjects who 
were trained on category C alone always grouped A and B together as a single part. 

To model this phase, I generated six category C venusian rocks that had both parts A 
and B (right panel, Figure 4). The versions of MAGIC that had been trained on category A 
and B rocks alone were now trained on category C rocks. As a control condition, a third 
version of MAGIC was trained from scratch on category C rocks alone. I compared the 
tightness of clustering of the combined A-B part for the first two nets to the third. Using 
the same variance measure as above, the nets that first received training on parts A and B 
alone yielded a variance of .57, and the net that was only trained on the combined A-B 
part yielded a variance of .47 (F(1,88) = 7.02, P < .02). One cannot directly compare the 
variance of the A-B part to that of the A and B parts alone, because the measure is struc­
tured such that parts with more features always yield larger variances. However, one can 
compare the two conditions using the relative variance of the combined A-B part to the A 
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FIGURE 4. Three examples of the martian rock stimuli used to train MAGIC. From left to 
right, the rocks are of categories A, B, and C. The lighter regions are the contours that define 
rocks of a given category. 
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and B parts alone. This yielded the same outcome as before (.21 for the first two nets, .12 
for the third net, F(l,88) = 5.80, p < .02). Thus, MAGIC is also able to account for the 
effects of prior learning on part ontogeny. 

7 CONCLUSIONS 
The regularity principle proposed in this work seems consistent with the homogene­

ity principle proposed earlier by Schyns and Murphy (1991, 1992). Indeed, MAGIC is 
able to model Schyns and Murphy's data using an unsupervised training paradigm, 
although Schyns and Murphy framed their experiment as a classification task. 

This work is but a start at modeling the development of part-whole hierarchies based 
on perceptual experience. MAGIC requires further elaboration, and I am somewhat skepti­
cal that it is sufficiently powerful in its present form to be pushed much further. The main 
issue restricting it is the representation of input features. The oriented-line-segment fea­
tures are certainly too primitive and inflexible a representation. For example, MAGIC 
could not be trained to recognize the lid and shell of Figure 2 because it encodes the orien­
tation of the features with respect to the image plane, not with respect to one another. Min­
imally, the representation requires some version of scale and rotation invariance. 

Perhaps the most interesting computational'issue raised by MAGIC is how the pat­
tern of feature tags is mapped into an explicit part-whole decomposition. This involves 
clustering together the similar tags as a unit, or possibly selecting all tags in a given range. 
To do so requires specification of additional parameters that are external to the model 
(e.g., how tight the cluster should be, how broad the range should be, around what tag 
direction it should be centered). These parameters are deeply related to attentional issues, 
and a current direction of research is to explore this relationship. 
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