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Abstract 

The technique of principal component analysis (PCA) has recently been 
expressed as the maximum likelihood solution for a generative latent 
variable model. In this paper we use this probabilistic reformulation 
as the basis for a Bayesian treatment of PCA. Our key result is that ef­
fective dimensionality of the latent space (equivalent to the number of 
retained principal components) can be determined automatically as part 
of the Bayesian inference procedure. An important application of this 
framework is to mixtures of probabilistic PCA models, in which each 
component can determine its own effective complexity. 

1 Introduction 

Principal component analysis (PCA) is a widely used technique for data analysis. Recently 
Tipping and Bishop (1997b) showed that a specific form of generative latent variable model 
has the property that its maximum likelihood solution extracts the principal sub-space of 
the observed data set. This probabilistic reformulation of PCA permits many extensions 
including a principled formulation of mixtures of principal component analyzers, as dis­
cussed by Tipping and Bishop (l997a). 

A central issue in maximum likelihood (as well as conventional) PCA is the choice of 
the number of principal components to be retained. This is particularly problematic in a 
mixture modelling context since ideally we would like the components to have potentially 
different dimensionalities. However, an exhaustive search over the choice of dimensionality 
for each of the components in a mixture distribution can quickly become computationally 
intractable. In this paper we develop a Bayesian treatment of PCA, and we show how this 
leads to an automatic selection of the appropriate model dimensionality. Our approach 
avoids a discrete model search, involving instead the use of continuous hyper-parameters 
to determine an effective number of principal components. 
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2 Maximum Likelihood peA 

Consider a data set D of observed d-dimensional vectors D = {tn } where n E 
{I, ... ,N}. Conventional principal component analysis is obtained by first computing 
the sample covariance matrix given by 

N 1"" - -T S = N L) t n - t) (tn - t) (1) 

n=l 

where t = N- 1 Ln tn is the sample mean. Next the eigenvectors Ui and eigenvalues .Ai 
of S are found, where SUi = .AiUi and i = 1, ... , d. The eigenvectors corresponding 
to the q largest eigenvalues (where q < d) are retained, and a reduced-dimensionality 
representation of the data set is defined by Xn = U T (t n - t) where U q = (U 1 , . .. ,Uq). 
It is easily shown that PCA corresponds to the linear projection of a data set under which 
the retained variance is a maximum, or equivalently the linear projection for which the 
sum-of-squares reconstruction cost is minimized. 

A significant limitation of conventional PCA is that it does not define a probability distri­
bution. Recently, however, Tipping and Bishop (1997b) showed how PCA can be reformu­
lated as the maximum likelihood solution of a specific latent variable model, as follows. 
We first introduce a q-dimensionallatent variable x whose prior distribution is a zero mean 
Gaussianp(x) = N(O, Iq) and Iq is the q-dimensional unit matrix . The observed variable t 
is then defined as a linear transformation ofx with additive Gaussian noise t = Wx+ p,+€ 
where W is a d x q matrix, p, is a d-dimensional vector and € is a zero-mean Gaussian­
distributed vector with covariance (72Id. Thus p(tlx) = N(Wx + p" (72Id). The marginal 
distribution of the observed variable is then given by the convolution of two Gaussians and 
is itself Gaussian 

p(t) = J p(tlx)p(x) dx = N(p" C) (2) 

where the covariance matrix C = WWT + (72Id. The model (2) represents a constrained 
Gaussian distribution governed by the parameters p" Wand (72. 

The log probability of the parameters under the observed data set D is then given by 

N 
L(p"W, (72) = -2 {dln(2rr) +lnlCl +Tr[C-1S]} (3) 

where S is the sample covariance matrix given by (I). The maximum likelihood solution 
for p, is easily seen to be P,ML = t. It was shown by Tipping and Bishop (l997b) that the 
stationary points of the log likelihood with respect to W satisfy 

WML = Uq(Aq - (72Iq)1/2 (4) 

where the columns of U q are eigenvectors of S, with corresponding eigenvalues in the 
diagonal matrix A q • It was also shown that the maximum of the likelihood is achieved when 
the q largest eigenvalues are chosen, so that the columns of U q correspond to the principal 
eigenvectors, with all other choices of eigenvalues corresponding to saddle points. The 
maximum likelihood solution for (72 is then given by 

d 

2 1 "" (7ML = ~ ~ .Ai 
q i=q+l 

(5) 

which has a natural interpretation as the average variance lost per discarded dimension. The 
density model (2) thus represents a probabilistic formulation of PCA. It is easily verified 
that conventional PCA is recovered in the limit (72 -+ O. 
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Probabilistic PCA has been successfully applied to problems in data compression, density 
estimation and data visualization, and has been extended to mixture and hierarchical mix­
ture models. As with conventional PCA, however, the model itself provides no mechanism 
for determining the value of the latent-space dimensionality q. For q = d - 1 the model 
is equivalent to a full-covariance Gaussian distribution, while for q < d - 1 it represents 
a constrained Gaussian in which the variance in the remaining d - q directions is mod­
elled by the single parameter (j2 . Thus the choice of q corresponds to a problem in model 
complexity optimization. If data is plentiful, then cross-validation to compare all possible 
values of q offers a possible approach. However, this can quickly become intractable for 
mixtures of probabilistic PCA models if we wish to allow each component to have its own 
q value. 

3 Bayesian peA 

The issue of model complexity can be handled naturally within a Bayesian paradigm. 
Armed with the probabilistic reformulation of PCA defined in Section 2, a Bayesian treat­
ment of PCA is obtained by first introducing a prior distribution p(p" W, (j2) over the 
parameters of the model. The corresponding posterior distribution p(p" W , (j2ID) is then 
obtained by multiplying the prior by the likelihood function, whose logarithm is given by 
(3), and normalizing. Finally, the predictive density is obtained by marginalizing over the 
parameters, so that 

(6) 

In order to implement this framework we must address two issues: (i) the choice of prior 
distribution, and (ii) the formulation of a tractable algorithm. Our focus in this paper is on 
the specific issue of controlling the effective dimensionality of the latent space (correspond­
ing to the number of retained principal components). Furthermore, we seek to avoid dis­
crete model selection and instead use continuous hyper-parameters to determine automat­
ically an appropriate effective dimensionality for the latent space as part of the process of 
Bayesian inference. This is achieved by introducing a hierarchical prior p(Wla) over the 
matrix W, governed by a q-dimensional vector of hyper-parameters a = {0:1, ... ,O:q}. 
The dimensionality of the latent space is set to its maximum possible value q = d - 1, and 
each hyper-parameter controls one of the columns of the matrix W through a conditional 
Gaussian distribution of the form 

(7) 

where {Wi} are the columns of W. This form of prior is motivated by the framework 
of automatic relevance determination (ARD) introduced in the context of neural networks 
by Neal and MacKay (see MacKay, 1995). Each O:i controls the inverse variance of the 
corresponding Wi, so that if a particular O:i has a posterior distribution concentrated at 
large values, the corresponding Wi will tend to be small, and that direction in latent space 
will be effectively 'switched off'. The probabilistic structure of the model is displayed 
graphically in Figure I. 

In order to make use of this model in practice we must be able to marginalize over the 
posterior distribution of W. Since this is analytically intractable we have developed three 
alternative approaches based on (i) type-II maximum likelihood using a local Gaussian 
approximation to a mode of the posterior distribution (MacKay, 1995), (ii) Markov chain 
Monte Carlo using Gibbs sampling, and (iii) variational inference using a factorized ap­
proximation to the posterior distribution. Here we describe the first of these in more detail. 
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Figure 1: Representation of Bayesian PCA as a probabilistic graphical model showing the hierarchi­
cal prior over W governed by the vector of hyper-parameters ex. The box. denotes a 'plate' comprising 
a data set of N independent observations of the visible vector tn (shown shaded) together with the 
corresponding hidden variables X n . 

The location W MP of the mode can be found by maximizing the log posterior distribution 
given, from Bayes' theorem, by 

1 d-l 

Inp(WID) = L - 2 L aill w ill 2 + const. 
i=1 

(8) 

where L is given by (3). For the purpose of controlling the effective dimensionality of 
the latent space, it is sufficient to treat J.L, (12 and Q as parameters whose values are to 
be estimated, rather than as random variables. In this case there is no need to introduce 
priors over these variables, and we can determine J.L and (1 2 by maximum likelihood. To 
estimate ex we use type-II maximum likelihood, corresponding to maximizing the marginal 
likelihood p( D I ex) in which we have integrated over W using the quadratic approximation . 
It is easily shown (Bishop, 1995) that this leads to a re-estimation formula for the hyper­
parameters ai of the form 

/i 
ai := II W ill 2 

(9) 

where /i ::::: d - ai Tri (H- 1 ) is the effective number of parameters in Wi, H is the Hessian 
matrix given by the second derivatives of Inp(WID) with respect to the elements of W 
(evaluated at W MP), and Tri (.) denotes the trace of the sub-matrix corresponding to the 
vector Wi. 

For the results presented in this paper, we make the further simplification of replacing / i in 
(9) by d, corresponding to the assumption that all model parameters are 'well-determined'. 
This significantly reduces the computational cost since it avoids evaluation and manipula­
tion of the Hessian matrix. An additional consequence is that vectors Wi for which there is 
insufficient support from the data wiII be driven to zero, with the corresponding a i -t 00, 

so that un-used dimensions are switched off completely. We define the effective dimension­
ality of the model to be the number of vectors Wi whose values remain non-zero. 

The solution for W MP can be found efficiently using the EM algorithm, in which the E­
step involves evaluation of the expected sufficient statistics of the latent-space posterior 
distribution, given by 

M-1W T (tn - J.L) 

(12M + (xn)(xn) T 

(10) 

(II) 
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where M = (WTW + a 2 Iq). The M-step involves updating the model parameters using 

W [ptn-I-')(X~)] [pxnX~)H'Ar (12) 

N 

(;2 ~d L {litn - J-t1l 2 - 2(x~)WT(tn - J-t) + Tr [(XnX~)WTW]} (13) 
n=l 

where A = diag(ad. Optimization of Wand a2 is alternated with re-estimation of n, 
using (9) with '"'Ii = d, until all of the parameters satisfy a suitable convergence criterion. 

As an illustration of the operation of this algorithm, we consider a data set consisting of 300 
points in 10 dimensions, in which the data is drawn from a Gaussian distribution having 
standard deviation 1.0 in 3 directions and standard deviation 0.5 in the remaining 7 direc­
tions. The result of fitting both maximum likelihood and Bayesian PCA models is shown 
in Figure 2. In this case the Bayesian model has an effective dimensionality of qeff = 3. 

• • • • 
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• • • • • • 
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• · • 
• • • • 

Figure 2: Hinton diagrams of the matrix W for a data set in 10 dimensions having m = 3 directions 
with larger variance than the remaining 7 directions. The left plot shows W from maximum likeli­
hood peA while the right plot shows WMP from the Bayesian approach, showing how the model is 
able to discover the appropriate dimensionality by suppressing the 6 surplus degrees of freedom. 

The effective dimensionality found by Bayesian PCA will be dependent on the number N 
of points in the data set. For N ~ 00 we expect qeff ~ d -1, and in this limit the maximum 
likelihood framework and the Bayesian approach will give identical results. For finite data 
sets the effective dimensionality may be reduced, with degrees of freedom for which there 
is insufficient evidence in the data set being suppressed. The variance of the data in the re­
maining d - qeff directions is then accounted for by the single degree of freedom defined by 
a2 . This is illustrated by considering data in 10 dimensions generated from a Gaussian dis­
tribution with standard deviations given by {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}. 
In Figure 3 we plot qeff (averaged over 50 independent experiments) versus the number N 
of points in the data set. 

These results indicate that Bayesian PCA is able to determine automatically a suitable 
effective dimensionality qeff for the principal component subspace, and therefore offers a 
practical alternative to exhaustive comparison of dimensionalities using techniques such as 
cross-validation. As an illustration of the generalization capability of the resulting model 
we consider a data set of 20 points in 10 dimensions generated from a Gaussian distribution 
having standard deviations in 5 directions given by (1.0,0.8,0.6 , 0.4,0.2) and standard 
deviation 0.04 in the remaining 5 directions. We fit maximum likelihood PCA models to 
this data having q values in the range 1-9 and compare their log likelihoods on both the 
training data and on an independent test set, with the results (averaged over 10 independent 
experiments) shown in Figure 4. Also shown are the corresponding results obtained from 
Bayesian PCA. 



Figure 3: Plot of the average effective dimensionality of the Bayesian PCA model versus the number 
N of data points for data in a IO-dimensional space. 
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Figure 4: Plot of the log likelihood for the training set (dashed curve) and the test set (solid curve) 
for maximum likelihood PCA models having q values in the range 1-9, showing that the best gener­
alization is achieved for q = 5 which corresponds to the number of directions of significant variance 
in the data set. Also shown are the training (circle) and test (cross) results from a Bayesian PCA 
model, plotted at the average effective q value given by qeff = 5.2. We see that the Bayesian PCA 
model automatically discovers the appropriate dimensionality for the principal component subspace, 
and furthermore that it has a generalization performance which is close to that of the optimal fixed q 
model. 

4 Mixtures of Bayesian peA Models 

Given a probabilistic formulation of PCA it is straightforward to construct a mixture distri­
bution comprising a linear superposition of principal component analyzers. In the case of 
maximum likelihood PCA we have to choose both the number IvI of components and the 
latent space dimensionality q for each component. For moderate numbers of components 
and data spaces of several dimensions it quickly becomes intractable to explore the expo­
nentially large number of combinations of q values for a given value of M. Here Bayesian 
PCA offers a significant advantage in allowing the effective dimensionalities of the models 
to be determined automatically. 

As an illustration we consider a density estimation problem involving hand-written digits 
from the CEDAR database. The data set comprises 8 x 8 scaled and smoothed gray-scale 
images of the digits '2', '3' and '4', partitioned randomly into 1500 training, 900 validation 
and 900 test points. For mixtures of maximum likelihood PCA the model parameters can be 
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determined using the EM algorithm in which the M-step uses (4) and (5), with eigenvector 
and eigenvalues obtained from the weighted covariance matrices in which the weighting co­
efficients are the posterior probabilities for the components determined in the E-step. Since, 
for maximum likelihood PCA, it is computationally impractical to explore independent q 
values for each component we consider mixtures in which every component has the same 
dimensionality. We therefore train mixtures having M E {2, 4,6, 8, 10, 12, 14, 16, 18} for 
all values q E {2, 4, 8, 12, 16, 20, 25, 30, 40, 50}. In order to avoid singularities associ­
ated with the more complex models we omit any component from the mixture for which 
the value of (7 2 goes to zero during the optimization. The highest log likelihood on the 
validation set ( - 295) is obtained for M = 6 and q = 50. 

For mixtures of Bayesian PCA models we need only explore alternative values for M , 
which are taken from the same set as for the mixtures of maximum likelihood PCA. Again, 
the best performance on the validation set (-293) is obtained for M = 6. The values of the 
log likelihood for the test set were -295 (maximum likelihood PCA) and -293 (Bayesian 
PCA). The mean vectors I-L i for each of the 6 components of the Bayesian PCA mixture 
model are shown in Figure 5. 

62 54 63 60 62 59 

Figure 5: The mean vectors for each of the 6 components in the Bayesian PCA mixture model , 
displayed as an 8 x 8 image, together with the corresponding values of the effective dimensionality. 

The Bayesian treatment of PCA discussed in this paper can be particularly advantageous 
for small data sets in high dimensions as it can avoid the singularities associated with 
maximum likelihood (or conventional) PCA by suppressing unwanted degrees of freedom 
in the model. This is especially helpful in a mixture modelling context, since the effective 
number of data points associated with specific 'clusters' can be small even when the total 
number of data points appears to be large. 
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