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Abstract 

We suggest a working definition of texture: Texture is stuff that is 
more compactly represented by its statistics than by specifying the 
configuration of its parts. This definition suggests that to fmd 
texture we look for outliers to the local statistics, and label as 
texture the regions with no outliers. We present a method, based 
upon this idea, for labeling points in natural scenes as belonging to 
texture regions, while simultaneously allowing us to label low­
level, bottom-up cues for visual attention. This method is based 
upon recent psychophysics results on processing of texture and 
popout. 

1 WHAT IS TEXTURE, AND WHY DO WE WANT TO 
FIND IT? 

In a number of problems in computer VlSlon and image processing, one must 
distinguish between image regions that correspond to objects and those which 
correspond to texture, and perform different processing depending upon the type of 
region. Current computer vision algorithms assume one magically knows this 
region labeling. But what is texture? We have the notion that texture involves a 
pattern that is somehow homogeneous, or in which signal changes are "too 
complex" to describe, so that aggregate properties must be used instead (Saund, 
1998). There is by no means a firm division between texture and objects; rather, the 
characterization often depends upon the scale of interest (Saund, 1998). 
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Ideally the defmition of texture should probably depend upon the application. We 
investigate a definition that we believe will be of fairly general utility: Texture is 
stuff that seems to belong to the local statistics. We propose extracting several 
texture features, at several different scales, and labeling as texture those regions 
whose feature values are likely to have come from the local distribution. 

Outliers to the local statistics tend to draw our attention (Rosenholtz, 1997, 1998). 
The phenomenon is often referred to as "popout." Thus while labeling (locally) 
statistically homogeneous regions as texture, we can simultaneously highlight 
salient outliers to the local statistics. Our revised defmition is that texture is the 
absence of popout. 

In Section 2, we discuss previous work in both human perception and in fmding 
texture and regions of interest in an image. In Section 3, we describe our method. 
We present and discuss results on a number of real images in Section 4. 

2 PREVIOUS WORK 

See (Wolfe, 1998) for a review of the visual search literature. Popout is typically 
studied using simple displays, in which an experimental subject searches for the 
unusual, target item, among the other, distractor items. One typically attempts to 
judge the "saliency," or degree to which the target pops out, by studying the 
efficiency of search for that item. Typically popout is modeled by a relatively low­
level operator, which operates independently on a number of basic features of the 
image, including orientation, contrast/color, depth, and motion. In this paper, we 
look only at the features of contrast and orientation. 

Within the image-processing field, much of the work in fmding texture has defmed 
as texture any region with a high luminance variance, e.g. Vaisey & Gersho (1992). 
Unfortunately, the luminance variance in a region containing an edge can be as high 
as that in a textured region. Won & Park (1997) use model fitting to detect image 
blocks containing an edge, and then label blocks with high variance as containing 
texture. 

Recently, several computer vision researchers have also tackled this problem. 
Leung & Malik (1996) found regions of completely deterministic texture. Other 
researchers have used the defmition that if the luminance goes up and then down 
again (or vice versa) it's texture (Forsyth et aI, 1996). However, this method will 
treat lines as if they were texture. Also, with no notion of similarity within a texture 
(also lacking in the image-processing work), one would mark a "fault" in a texture 
as belonging to that texture. This would be unacceptable for a texture synthesis 
application, in which a routine that tried to synthesize such a texture would most 
likely fail to reproduce the (highly visible) fault. More recently, Shi and Malik 
(1998) presented a method for segmenting images based upon texture features. Their 
method performs extremely well at the segmentation task, dividing an image into 
regions with internal similarity that is high compared to the similarity across 
regions. However, it is difficult to compare with their results, since they do not 
explicitly label a subset of the resulting regions as texture. Furthermore, this 
method may also tend to mark a "fault" in a texture as belonging to that texture. 
This is both because the method is biased against separating out small regions, and 
because the grouping of a patch with one region depends as much upon the 
difference between that patch and other regions as it does upon the similarity 
between the patch and the given region. 

Very little computer vision work has been done on attentional cues. Milanese et al 
(1993) found salient image regions using both top-down information and a bottom­
up "conspicuity" operator, which marks a local region as more salient the greater the 
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difference between a local feature value and the mean feature value in the 
surrounding region. However. for the same difference in means. a local region is 
less salient when there is a greater variance in the feature values in the surrounding 
region (Duncan & Humphreys. 1989; Rosenholtz. 1997). We use as our saliency 
measure a test for outliers to the local distribution. This captures. in many cases. the 
dependence of saliency on difference between a given feature value and the local 
mean. relative to the local standard deviation. We will discuss our saliency measure 
in greater detail in the following section. 

3 FINDING TEXTURE AND REGIONS OF INTEREST 

We compute multiresolution feature maps for orientation and contrast. and then look 
for outliers in the local orientation and contrast statistics. We do this by fast 
creating a 3-level Gaussian pyramid representation of the image. To extract 
contrast. we filter the pyramid with a difference of circularly symmetric Gaussians. 
The response of these filters will oscillate. even in a region with constant-contrast 
texture (e.g. a sinewave pattern). We approximate a computation of the maximum 
response of these filters over a small region by fast squaring the filter responses. 
and then filtering the contrast energy with an appropriate Gaussian. Finally. we 
threshold the contrast to eliminate low-contrast regions ("flat" texture). These 
thresholds (one for each scale) were set by examining the visibility of sinewave 
patterns of various spatial frequencies. 

We compute orientation in a simple and biologically plausible way. using Bergen & 
Landy's (1991) "back pocket model" for low-level computations: 

1. Filter the pyramid with horizontal. vertical. and ±45° oriented Gaussian second 
derivatives. 

2. Compute opponent energy by squaring the filter outputs. pooling them over a 
region 4 times the scale of the second derivative filters. and subtracting the 
vertical from the horizontal response and the +45 0 from the _45 0 response. 

3. Normalize the opponent energy at each scale by dividing by the total energy in 
the 4 orientation energy bands at that scale. 

The result is two images at each scale of the pyramid. To a good approximation. in 
regions which are strongly oriented. these images represent kcos(26) and ksin(26). 
where 6 is the local orientation at that scale. and k is a value between 0 and 1 which 
is related to the local orientation specificity. Orientation estimates from points with 
low specificity tend to be very noisy. In images of white noise. 80% of the 
estimates of k fall below 0.5. therefore with 80% confidence. an orientation 
specificity of k>0.5 did not occur due to chance. We use this value to threshold out 
orientation estimates with low "orientedness.·· 

We then estimate D, the local feature distribution, for each feature and scale, using 
the method of Parzen windows. The blurring of the distribution estimate by the 
Parzen window mimics uncertainty in estimates of feature values by the visual 
system. We collect statistics over a local integration region. For texture processing. 
the size of this region is ind.ependent of viewing distance, and is roughly lOS in 
diameter, where S is the support of the Gaussian 2nd derivative filters used to extract 
the texture features (Kingdom & Keeble, 1997; Kingdom et ai, 1995). 

We next compute a non-parametric measure of saliency: 

( P(v ID) , 
saliency = -IO~ ) 

maxP(x ID) 
% 

(1) 
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Note that if D were Gaussian N(~,a2), this simplifies to 

(X_tt)2 
'1a2 

(2) 

which should be compared to the standard parametric test for outliers, which uses 
the measure (x - tt)/ a. Our saliency measure is essentially a more general, non-
parametric form of this measure (i.e. it does not assume a Gaussian distribution). 

Points with saliency less than 0.5 are labeled as candidate texture points. If D were 
Gaussian, this would correspond to feature estimates within one standard deviation 
of the mean. Points with saliency greater than 3.1 are labeled as candidates for 
bottom-up attentional cues. If D were Gaussian, this would correspond to feature 
estimates more than 2.50 from the mean, a standard parametric test for outliers. 
One could, of course, keep the raw saliency values, as a measure of the likelihood 
that a region contained texture, rather than setting a hard threshold. We use a hard 
threshold in our examples to better display the results. Both the texture images and 
the region of interest images are median-filtered to remove extraneous points. 

4 EXPERIMENTAL RESULTS 

Figure 3 shows several example images. Figures 2, 3, and 4 show texture found at 
each scale of processing. The striped and checkered patterns represent oriented and 
homogeneous contrast texture, respectively. The absence of an image in any of 
these figures means that no texture of the given type was found in that image at the 
given scale. Note that we perform no segmentation of one texture from another. 

For the building image, the algorithm labeled bricks and window panes as fme-scale 
texture, and windows and shutters as coarser-scale texture. The leopard skin and 
low-frequency stripes in the lower right comer of the leopard image were correctly 
labeled as texture. In the desk image, the "wood" texture was correctly identified. 
The regular pattern of windows were marked as texture in the hotel image. In the 
house image, the wood siding, trees, and part of the grass were labeled as texture 
(much of the grass was low contrast and labeled as "flat" texture). One of the 
bushes is correctly identified as having coarser texture than the other has. In the 
lighthouse image, the house sans window, fence, and tower were marked, as well as 
a low-frequency oriented pattern in the clouds. 

Figure 5 shows the regions of interest that were found (the striped and plaid patterns 
here have no meaning but were chosen for maximum visibility). Most complex 
natural scenes had few interesting low-level attentional areas. In the lighthouse 
image, the life preserver is marked. In the hotel, curved or unusual angular 
windows are identified as attentional cues, as well as the top of the building. Both 
of these results are in agreement with psychophysical results showing that observers 
quickly identify curved or bent lines among straight lines (reviewed in Wolfe, 
1998). The simpler desk scene yields more intuitive results, with each of the 3 
objects labeled, as well as the phone cord. 

Bottom-up attentional cues are outliers to the local distribution of features, and we 
have suggested that texture is the absence of such outliers. This definition captures 
some of the intuition that texture is homogeneous and statistical in nature. We 
presented a method for fmding contrast and orientation outliers, and results both on 
localizing texture and on finding popout in natural images. For the simple desk 
image, the algorithm highlights salient regions that correspond to our notions of the 
important objects in the scene. On complicated natural scenes, its results are less 
intuitive; suggesting that search in natural scenes makes use of higher-level 



General-Purpose Localization o/Textured Image Regions 821 

processing such as grouping into objects. This result should not be terribly 
surprising, but serves as a useful check on simple low-level models of visual 
attention. The algorithm does a good job of identifying textured regions at a 
number of different scales, with the results perhaps more intuitive at finer scales. 
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Figure I: Original images. 

(a) 

(b) 

Figure 2: Fine-scale texture. (a) oriented texture, (b) homogeneous contrast 
texture. 
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Figure 3: Medium-scale texture. (a) oriented texture, (b) homogeneous contrast 
texture. 
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(a) (b) 

Figure 4: Coarse-scale texture. (a) oriented texture, (b) homogeneous contrast 
texture . 
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Figure 5: Regions of interest. 
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