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Abstract

Cortical amplification has been proposed as a mechanism for enhancing
the selectivity of neurons in the primary visual cortex. Less appreciated
is the fact that the same form of amplification can also be used to de-tune
or broaden selectivity. Using a network model with recurrent cortical
circuitry, we propose that the spatial phase invariance of complex cell
responses arises through recurrent amplification of feedforward input.
Neurons in the network respond like simple cells at low gain and com-
plex cells at high gain. Similar recurrent mechanisms may play a role
in generating invariant representations of feedforward input elsewhere in
the visual processing pathway.

1 INTRODUCTION

Synaptic input to neurons in the primary visual cortex is primarily recurrent, arising from
other cortical cells. The dominance of this type of connection suggests that it may play an
important role in cortical information processing. Previous studies proposed that recurrent
connections amplify weak feedforward input to the cortex (Douglas et al., 1995) and selec-
tively amplify tuning for specific stimulus characteristics, such as orientation or direction
of movement (Douglas et al., 1995; Ben-Yishai et al., 1995; Somers et al., 1995; Sompolin-
sky and Shapley, 1997). Cortical cooling and shocking experiments provide evidence that
there is cortical amplification through recurrent connections, but they do not show increases
in orientation or direction selectivity as a result of this amplification (Ferster et al., 1996;
Chung and Ferster, 1998). Recurrent connections can also decrease neuronal selectivity
through the same form of amplification, generating responses that are insensitive to certain
stimulus features. Although the ability to sharpen tuning may be an important feature in
cortical processing, the capacity to broaden tuning for particular stimulus attributes is also
desirable.

Neurons in the primary visual cortex can be divided into two classes based on their re-
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sponses to visual stimuli such as counterphase and drifting sinusoidal gratings. Sim-
ple cells show tuning for orientation, spatial frequency, and spatial phase of a grating
(Movshon et al., 1978a). Complex cells exhibit orientation and spatial frequency tun-
ing, but are insensitive to spatial phase (Movshon et al., 1978b). A counterphase grating,
s(z,t) = cos(Kx — ®) cos(wt), is one in which the spatial phase, ®, and spatial frequency,
K, are held constant but the contrast, s(z, t), varies sinusoidally in time at some frequency
w. In response to a counterphase grating, the activity of a simple cell oscillates at the same
frequency as the stimulus, w. A complex cell response is modulated at twice the frequency,
2w. To create a drifting grating of frequency v, s(z,t) = cos(Kz — vt), the spatial phase
and spatial frequency are held constant but the grating is moved at velocity v/ K. A simple
cell response to a drifting grating is highly modulated at frequency v, while a complex
cell response to a drifting grating is elevated but relatively unmodulated. The differences
between complex and simple cell responses are a direct consequence of the complex cell
spatial phase insensitivity.

Previous models of complex cells generate spatial-phase invariant responses through con-
verging sets of feedforward inputs with a wide range of spatial phase preferences but similar
orientation and spatial frequency selectivities (Hubel and Wiesel, 1962; Mel et al., 1998).
These models do not incorporate recurrent connections between complex cells, which are
known to be particularly strong (Toyama et al., 1981). We propose that the spatial phase
invariance of complex cell responses can arise from a broadening of spatial phase tuning
by cortical amplification (Chance et al., 1998). The model neurons exhibit simple cell be-
havior when weakly coupled and complex cell behavior when strongly coupled, suggesting
that the two classes of neurons in the primary visual cortex may arise from the same basic
cortical circuit.

2 THE MODEL

The activity of neuron i in the model network is characterized by a firing rate r;. Each
neuron sums feedforward and recurrent input and responds as described by the standard

rate-model equation
dr;
T,.—-&-tl = I,' + ZW;jTJ' = Ty
I; represents the feedforward input to cell i, W;; is the weight of the synapse from neuron
J to neuron ¢, and 7. is a time constant. Previous studies have suggested that, for a neuron
receiving many inputs, 7, is small, closer to a synaptic time constant than the membrane
time constant (Ben-Yishai et al., 1995; Treves, 1993). Thus we choose 7. = 1 ms.

The feedforward input describes the response of a simple cell with a Gabor receptive field
L= [ ] dzG;(z) f dt'H(t')s(z,t — t’)] ,
0 +

where s(z,t) represents the contrast function of the visual stimulus and the notation [ |+
indicates rectification. The temporal response function is (Adelson and Bergen, 1985)

N N[ (at')®  (at')"
H(t') = exp(—at’) ( R ;
where we use a = 1/ms. The spatial filter is a Gabor function,
2

G =exp (—2:;?) cos(kix — ¢;),

1

where o; determines the spatial extent of the receptive field, k; is the preferred spatial
frequency, and ¢; is the preferred spatial phase. The values of ¢; are equally distributed
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over the interval [—180°,180°). To give the neurons a realistic bandwidth, o; is chosen
such that k;o; = 2.5. Initially we consider a simplified case in which k; = 1 for all cells.
Later we consider the spatial frequency selectivity of neurons in the network and allow the
value of k; to range from 0 to 3.5 cycles/deg.

In this paper we assume that the model network describes one orientation column of the
primary visual cortex, and thus all neurons have the same orientation tuning. All stimuli
are of the optimal orientation for the network.

Spatial phase tuning is selectively broadened in the model because the strength of a recur-
rent connection between two neurons is independent of the spatial phase selectivities of
their feedforward inputs. In the model with all k; = 1, the recurrent input is determined by

g
W = —2
1 (N _ 1) 1]
forall ¢ # 3. N is the number of cells in the network, and 0 < g < gmaz, Where gmaz IS
the largest value of g for which the network remains stable. In this case gq, = 1.

3 RESULTS

The steady-state solution of the rate-model equation is given by r; = I + > W;,r;. To
solve this equation, we express the rates and feedfoward inputs in terms of a complete set
of eigenvectors ! of the recurrent weight matrix, 3 Wi;€5 = A€ forp =1,2,..., N,
where A, are the eigenvalues. The solution is then

N

R
T{:Z 1_‘/\}];}}&;‘

pu=1

This equation displays the phenomenon of cortical amplification if one or more of the
eigenvalues is near one. If we assume only one eigenvalue, A1, is close to one, the factor 1 —
A1 in the denominator causes the 12 = 1 term to dominate and we find r; ~ & 3 I;} (1 —
A1)~ L. The input combination 3 IJ{:} dominates the response, determining selectivity,

and this mode is amplified by a factor 1/(1 — A;). We refer to this amplification factor as
the cortical gain.

In the case where W;; = g/(N — 1) for ¢ # j, the largest eigenvalue is A; = g and the
corresponding eigenvector has all components equal to each other. For g near one, the re-
current input to neuron ¢ is then proportional to jlcos(®—@;)]+ which, for large numbers
of cells with uniformly placed preferred spatial phases ¢;, is approximately independent of
@, the spatial phase of the stimulus. When g is near zero, the network is at low gain and
the response of neuron ¢ is roughly proportional to its feedforward input, [cos(® — ¢;)]4,
and is sensitive to spatial phase.

The response properties of simple and complex cells to drifting and counterphase gratings
are duplicated by the model neuron, as shown in figure 1. For low gain (gain = 1, top panels
of figures 1A and 1B), the neuron acts as a simple cell and its activity is modulated at the
same frequency as the stimulus (w for counterphase gratings and v for drifting gratings).
At high gain (gain = 20), the neuron responds like a complex cell, exhibiting frequency
doubling in the response to a counterphase grating (bottom panel of Figure 1A) and an
elevated DC response to a drifting grating (bottom panel, Figure 1B). Intermediate gain
(gain = 5) produces intermediate behavior (middle panels).

The basis of this model is that the amplified mode is independent of spatial phase. If
the amplified mode depends on spatial frequency or orientation, neurons at high gain can
be selective for these attributes. To show that the model can retain selectivity for other
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Figure 1: The effects of recurrent input on the responses of a neuron in the model network.
The responses of one neuron to a 2 Hz counterphase grating (A) and to a 2 Hz drifting
grating (B) are shown for different levels of network gain. From top to bottom in A and B,
the gain of the network is one, five, and twenty.

stimulus characteristics while maintaining spatial phase insensitivity, we allowed the spatial
frequency selectivity which each neuron receives from its feedforward input, k;, to vary
from neuron to neuron and also modified the recurrent weight matrix so that the strength
of the connection between two neurons, i and j, depends on k; — k;. The dependence is
modeled as a difference of Gaussians, so the recurrent weight matrix is now

Thus neurons that receive feedforward input tuned for similar spatial frequencies excite
each other and neurons that receive very differently tuned feedforward input inhibit each
other. This produces complex cells that are tuned to a variety of spatial frequencies, but are
still insensitive to spatial phase (see figure 2). The spatial frequency tuning curve width is
primarily determined by o. = 0.5 cycle/deg and s = 1 cycle/deg.

Cells within the same network do not have to exhibit the same level of gain. In previ-
ous figures, the gain of the network was determined by a parameter g that described the
strength of all the connections between neurons. In figure 3, the recurrent input to cell
is determined by W;; = g;/(IN — 1), where the values of g; are chosen randomly within
the allowed range. The gain of each neuron depends on the value of g; for that neuron. As
shown in figure 3, a range of complex and simple cell behaviors now coexist within the
same network.

4 DISCUSSION

In the recurrent model we have presented, as in Hubel and Wiesel’s feedforward model, the
feedforward input to a complex cell arises from simple cells. Measurements by Alonso and
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Figure 2: Neurons in a high-gain network can be selective for spatial frequency while re-
maining insensitive to spatial phase. Both spatial phase and spatial frequency tuning are
included in the feedforward input. A) The spatial phase tuning curves of three representa-
tive neurons from a high-gain network. B) The spatial frequency tuning curves of the same
three neurons as in A.

Martinez (1998) support this circuitry. However, direct excitatory input to complex cells
arising from the LGN has also been reported (Hoffman and Stone, 1971; Singeretal., 1975;
Ferster and Lindstrom, 1983). Supporting these measurements is evidence that certain
stimuli can excite complex cells without strong excitation of simple cells (Hammond and
Mackay, 1975, 1977; Movshon, 1975) and also that complex cells still respond when simple
cells are silenced (Malpeli, 1983; Malpeli et al, 1986; Mignard and Malpeli, 1991). In
accordance with this, the weak feedforward simple cell input in the recurrent model could
probably be replaced by direct LGN input, as in the feedforward model of Mel et al. (1998).

The proposed model makes definite predictions about complex cell responses. If the phase-
invariance of complex cell responses is due to recurrent interactions, manipulations that
modify the balance between feedforward and recurrent drive should change the nature of
the responses in a predictable manner. The model predicts that blocking local excitatory
connections should turn complex cells into simple cells. Conversely, manipulations that
increase cortical gain should make simple cells act more like complex cells. One way to
increase cortical gain may be to block or partially block inhibition since this increases the
influence of excitatory recurrent connections. Experiments along these lines have been
performed, and blockade of inhibition does indeed cause simple cells to take on complex
cell properties (Sillito, 1975; Shulz et al., 1993).

In a previous study, Hawken, Shapley, and Grosof (1996) noted that the temporal frequency
tuning curves for complex cells are narrower for counterphase stimuli than for drifting
stimuli. The recurrent model reproduces this result as long as the integration of synaptic
inputs depends on temporal frequency. Such a dependence is provided, for example, by
short-term synaptic depression (Chance et al., 1998). Hubel and Wiesel’s feedforward
model (1962) does not reproduce this effect, even with synaptic depression at the synapses.

We have presented a model of primary visual cortex in which complex cell response char-
acteristics arise from recurrent amplification of simple cell responses. The complex cell
responses in the high gain regime arise because recurrent connections selectively deam-
plify selectivity for spatial phase. Thus recurrent connections can act to generate invariant
representation of input data. A similar mechanism could be used to produce responses that
are independent of other stimulus attributes, such as size or orientation. Given the ubiquity
of invariant representations in the visual pathway, this mechanism may have widespread
use.



Recurrent Cortical Amplification Produces Complex Cell Responses 95

100 100
0 : 0
0

(¢}
w0
g | | | |
2 500 1000 0 500 1000
()
% 100 100 —
. /’\__/\_/\_/\__/
X 50 50 —

0 T | 0 | |

0 500 1000 0 500 1000
time (ms) time (ms)

Figure 3: Responses to a 4 Hz drifting grating of four neurons from a large network con-
sisting of a mixture of simple and complex cells. The two traces on the left represent simple
cells and the two traces on the right represent complex cells.
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