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Abstract 

Visual search is the task of finding a target in an image against a 
background of distractors. Unique features of targets enable them 
to pop out against the background, while targets defined by lacks of 
features or conjunctions of features are more difficult to spot. It is 
known that the ease of target detection can change when the roles 
of figure and ground are switched. The mechanisms underlying 
the ease of pop out and asymmetry in visual search have been 
elusive. This paper shows that a model of segmentation in VI based 
on intracortical interactions can explain many of the qualitative 
aspects of visual search. 

1 Introduction 

• 
In 

Visual search is closely related to visual segmentation, and therefore can be used to 
diagnose the mechanisms of visual segmentation. For instance, a red dot can pop­
out against a background of green distractor dots instantaneously, suggesting that 
only pre-attentive mechanisms are necessary (Treisman et aI, 1990). On the other 
hand, it is much more difficult to search for a red 'X' among green 'X's and red 
'O's - the time it takes to detect the target's presence increases with the number of 
background distractors, suggesting some form of attentive serial search. Sometimes, 
the search times change when the role of the figure (target) and ground (distractors) 
are switched -- asymmetry in visual search. For instance, it is easier to find a longer 
bar in a background of shorter bars than vice-versa. 

It has been unclear which visual areas or neural mechanisms are responsible for 
the pop out and asymmetry in visual search. There are, however, psychophysi­
cal theories (Treisman et at 1990, Treisman and Gormican 1988) which argue that 
visual inputs are coded in a number of primitive or basic feature dimensions: ori­
entation, color, brightness, motion direction, disparity, line ends, line intersections, 
and closure. A target can pop-out preattentively if it has a feature in one of these 
dimensions, such as a particular color or orientation, which is absent in the distrac-
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tors. Hence, a red dot pops out among green ones. However, red 'X' is difficult 
to spot among green 'X's and red 'O's because neither being red nor being 'X' is 
unique for the target, and therefore serial search is required. While a vertical line 
pops out of horizontal ones and vice versa without any search asymmetry, search 
asymmetry will arise when a single feature in which target and distractors differ is 
present in one of the two and absent or reduced in the other. Hence, a long line is 
more easily spotted among short lines than the reserve. This theory has been very 
helpful in understanding search phenomena. However, it has to make assumptions 
about what are the primitive feature dimensions, as well as what constitutes larger 
or smaller values along a given dimension. For instance, to explain that a curved 
line is more easily spotted among straight lines than the reverse, the theory has 
to define straightness as the default or standard, and curvaciousness as the devi­
ation from this standard and thus an added feature. Empirically, other pairs of 
standard and deviant properties include vertical versus tilted, parallel versus con­
vergent, short vs long lines, circle vs ellipse, and complete versus incomplete circles. 
The basis behind these assumptions are not completely clear. Other related theories 
have similar problems. For instance, Julesz's texton theory (Julesz 1981) for visual 
segmentation or pop out starts off by assuming a complete set of special features 
that constitute textons. 

This paper proposes and demonstrates in a model that pre-attentive mechanisms 
in VI can qualitatively explain many of the phenomena of visual search. It is 
assumed that the ease of search is determined by the relative saliencies of the target 
and distractors. Intracortical interactions in VI alter the saliencies of targets and 
distractors according to their own image features as well as those of the distractor 
or targets images that form the context. Hence, the relative saliency depends on 
the particular target-distractor pair involved. In particular, asymmetry is a natural 
consequence of contextual influences. 

2 The VI model 

We use a VI model of pre-attentive visual segmentation which has been shown to 
be able to detect and highlight smooth contours in noisy backgrounds and find 
boundaries between texture regions in images (Li 1998a, 1998b). Its behavior 
agrees with physiological observations (Knierim and van Essen 1992, Kapadia et 
al 1995). Without loss of generality, the model ignores color, motion, and stereo 
dimensions, includes mainly layer 2-3 orientation selective cells, and ignores the 
intra-hypercolumnar mechanism by which their receptive fields are formed. Inputs 
to the model are images filtered by the edge- or bar-like local receptive fields (RFs) 
of VI cells.! The cells influence each other contextually via horizontal intra-cortical 
connections (Rockland and Lund 1983, Gilbert, 1992), transforming patterns of in­
puts to patterns of cell responses. Fig. 1 shows the elements of the model and their 
interactions. At each location i there is a model VI hypercolumn composed of K 
neuron pairs. Each pair (i, 0) has RF center i and preferred orientation 0 = br / K 
for k = 1,2, ... K, and is called (the neural representation of) an edge segment. 
Based on experimental data (White, 1989, Douglas and Martin 1990), each edge 
segment consists of an excitatory and an inhibitory neuron that are interconnected, 
and each model cell represents a collection of local cells of similar types. The exci­
tatory cell receives the visual input; its output is used as a measure of the response 
or salience of the edge segment and projects to higher visual areas. The inhibitory 
cells are treated as interneurons. Based on observations by Gilbert, Lund and their 
colleagues (Rockland and Lund, 1983, Gilbert 1992) horizontal connections JiO,jO' 

IThe terms 'edge' and 'bar' will be used interchangeably. 
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Figure 1: A: Visual inputs are sampled in a discrete grid of edge/bar detectors. 
Each grid point i has K neuron pairs (see C), one per bar segment, tuned to 
different orientations 8 spanning 1800 • Two segments at different grid points can 
interact with each other via monosynaptic excitation J (the solid arrow from one 
thick bar to anothe r) or disynaptic inhibition W (the dashed arrow to a thick 
dashed bar). See also C. B: A schematic of the neural connection pattern from the 
center (thick solid) bar to neighboring bars within a few sampling unit distances. 
J's contacts are shown by thin solid bars. W's are shown by thin dashed bars. The 
connection pattern is translation and rotation invariant. C: An input bar segment 
is directly processed by an interconnected pair of excitatory and inhibitory cells, 
each cell models abstractly a local group of cells of the same type. The excitatory 
cell receives visual input and sends output 9x(XiO) to higher centers. The inhibitory 
cell is an interneuron. Visual space is taken as having periodic boundary conditions. 

(respectively Wio.jo') mediate contextual influences via monosynaptic excitation 
(respectively disynaptic inhibition) from j8' to i8 which have nearby but different 
RF centers, i # j, and similar orientation preferences, 8 f'V 8'. The membrane 
potentials follow the equations: 

XiO -O:xXiO - L 1P(~8)9Y(Yi .6+~O) + J0 9x(XiO) + L Jio•jO'9x(Xjo') + liO + lo 
~o ji-i,O' 

ilie = -O:yYiO + 9x(XiB) + L WiO.jO' 9x(XjO') + Ie 
ji-i,O' 

where O:xXiO and O:yYiO model the decay to resting potential, 9x(x) and 9y(Y) are 
sigmoid-like functions modeling cells' firing rates in response to membrane poten­
tials x and Y, respectively, 1P(~(}) is the spread of inhibition within a hypercolumn, 
J09x (XiO) is self excitation, Ie and 10 are background inputs, including noise and 
inputs modeling the general and local normalization of activities (see Li (1998b) 
for more details). Visual input liB persists after onset, and initializes the activity 
levels 9x (XiO ). The activities are then modified by the contextual influences. De­
pending on the visual input, the system often settles into an oscillatory state (Gray 
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and Singer, 1989, see the details in Li 1998b). Temporal averages of gx(XiO) over 
several oscillation cycles are used as the model 's output. The nature of the compu­
tation performed by the model is determined largely by the horizontal connections 
J and W, which are local (spanning only a few hypercolumns), and translation and 
rotation invariant (Fig. 1B). 
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Figure 2: Visual search examples plotted by the model inputs and outputs. A: A single 
distinctive feature, the horizontal bar in the target, enables pop out . This target is the 
most salient (measured as the saliency of the horizontal bar in target) spot in the image. 
B: The target does not pop out since neither of its features , a horizontal and a 45° bars, 
is unique in the image. The target is less salient than average in the image. C and D 
demonstrate the asymmetry in a target-distractor pair. C: The cross is the most salient 
(measured by the saliency of the horizontal bar) spot in the image. The popout strength 
is stronger than in A. D: The target bar does not pop out, 

The model was applied to a variety of input patterns , as shown in examples in the 
figures. The input values f io are the same for all visible bars in each example. The 
differences in the outputs are caused by intracortical interactions. They become 
significant about one membrane time constant after the initial neural response (Li, 
1998b). The widths of the bars in the figures are proportional to input and output 
strengths. The plotted region in each picture is often a small region of an extended 
image. The same model parameters (e.g. the dependence of the synaptic weights 
on distances and orientations, the thresholds and gains in the functions gx 0 and 
gyO, and the level of input noise in 10 ) are used for all the simulation examples. 

We define the net saliency S i at each grid point i as that of the most activated bar. 
Define S and as be the mean and standard deviation of the saliencies of all grid 
points with visible stimuli. Let Ti == Sd S and Zi == (Si - S)/as . A highly salient 
point i should have large values of (Ti , Zi ) - in particular, both Ti and Zi should be 
larger than 1. For larger targets that occupy more than one grid point, the relative 
saliency measure of the target is that of the most salient grid point on the target. 

Fig. (2)A,B compare the state of the target '7'- ' in two different contexts. Against a 
texture of ')" it is highly salient because of its unique horizontal bar. Against ')" and 
'~ ' it is much less salient because only the conjunction of '-' and '/ ' distinguishes 
it. Fig. (2)C,D exhibit search asymmetry. The horizontal bar in the target is unique 
in the image of Fig. (2)A,C, which leads to pop out, and each target sits at the most 
salient location in the respective images. On the other hand, no feature in the targets 
of Fig. (2)B,D is unique. These examples are consistent with the psychophysical 
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Figure 3: Five typical examples, one column each, of visual search asymmetry as sim­
ulated in the model. The input stimuli are plotted, the target saliency r, z scores are 
indicated below each of them. All input bars are of the same intermediate input contrast. 
The role of figure and ground is switched from the top to the bottom rows. 

theories mentioned in introduction. Further, we note that because intracortical 
interactions link mostly neurons preferring similar orientations , two very different 
orientations can be viewed as independent features. The pop out is stronger in Fig. 
(2)C than Fig. (2)A since horizontal differs more from vertical (90°) than from 45° . 
The V1 orientation selective RFs and orientation specific horizontal connnections 
provide the neural basis for orientation as one of the primitive feature dimensions. 
In fact, the contextual influences between image features imply that saliency values 
depend on detailed geometrical relationships between features within and between a 
target or distrator and its nearby target or distractors (see Fig. (2)B). The relative 
ease in searches varies continuously from extreme pop out to slow serial searches 
depending on the specific stimuli, as suggested by Duncan and Humphreys (1989) . 

Further interesting examples of search asymmetry include cases for which neither 
target nor distractors have a primitive feature (such as color or orientation) that 
is absent in the other. Asymmetry is much weaker but still present. Figure 3 
shows some typical examples. Although the saliencies of the more salient targets 
are only fractionally higher than the average feature saliency in rest of the image, 
this fraction is significant when the standard deviation (J" s of the saliencies is small 
or when z is large enough, thus making the search task easier. 

3 Summary and Discussion 

Early psychophysical studies (Treisman et al 1990) suggested that most aspects of 
visual search involve mechanisms of early vision. However, it has never been clear 
which visual areas or neural mechanisms might be responsible. To the best of my 
knowledge, this model is the first non-phenomenological model to understand the 
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Figure 4: Four examples of model performance under various inputs. Each plots the visual 
input image at the top and the most activated bars in VI cell outputs (using a threshold) 
at the bottom. Every visible bar in a given input image has the same input strength. A, B, 
and C demonstrate that the texture region boundaries have the highest output saliencies. 
D shows that the smooth contours are detected as the most salient against a background 
of noise. 

neural bases of visual search phenomena (see Rubenstein and Sagi (1990) for a 
model of asymmetry using variances of the local image filter responses). This pa­
per has shown that intra-cortical interactions in VI can account for the qualitative 
phenomena of pop-out and asymmetry in visual search, assuming that the ease of 
detection is directly determined by the saliencies of targets. Of course, the task 
of search requires decision making and often visual attention, especially when the 
target does not spontaneously pop-out. The quantitative search times can only be 
modeled on the basis of an assumption of specific mechanisms for attention and de­
cision making. Our model suggests, nevertheless, that pre-attentive VI mechanisms 
playa significant and controlling role in such tasks. Furthermore, it suggests that 
some otherwise intractable phenomena can be understood without resorting to ad­
ditional concepts such as textons (Julesz 1981) or defining certain image properties 
(such as closure and straightness) as having standard or reference values. 

Our current implementation of VI is still very simplistic. We have not yet in­
cluded color, motion, or stereo inputs, nor multiscale sampling. Further, our input 
sampling density is very low. Consequently, the model cannot simulate many of 
the more complex input stimuli used in psychophysical experiments (Treisman and 
Gormican, 1988). An extended implementation is needed to test whether VI mech­
anisms alone can qualitatively account for all or most types of search pop-out and 
asymmetries. Physiological evidence (Gilbert 1992) suggests that intracortical con­
nections tend to link neurons with similar selectivities in other dimensions, such as 
color and stereo, in addition to orientation. This supports the idea that color, mo­
tion, and disparity are also primitive visual coding dimensions like orientation. We 
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believe that the example in Fig. 2A,B demonstrating pop-out versus serial search 
would be more convincing if color were included to simulate, for instance, a red 
'X' among green 'X's with and without red 'O's in the background. Our current 
model does not explain why a slightly tilted line pops out more readily from ver­
tical line distractors than the reverse. This is because our VI model idealistically 
assumes rotational symmetry, and so vertical is not distinguished from other orien­
tations. Neither our visual environment nor our visual system is in fact rotationally 
invariant. 

The VI model was originally proposed to account for pre-attentive contour en­
hancement and visual segmentation (Li 1998a, 1998b). The contextual influences 
mediated by the intracortical interactions enable each VI neuron to process inputs 
from a local image area larger than its classical receptive field. This enables cortical 
neurons to detect image locations where translation invariance in the input image 
breaks down, and highlight these image locations with higher neural activities, mak­
ing them conspicuous. These highlights mark candidate locations for image region 
(or object surface) boundaries, smooth contours and small figures against back­
grounds, serving the purpose of pre-attentive segmentation. Fig. 4 demonstrates 
the performance of the model for pre-attentive segmentation. In each example, the 
visual inputs and the most salient outputs are shown. All examples are simulated 
using exactly the same model parameters as those used in examples of visual search. 
It is not too surprising that a model of pre-attentive segmentation in VI can ex­
plain visual search phenomena. Indeed, pop out has been commonly understood as 
a sign of pre-attentive segmentation. Our model further suggests that asymmetry 
in visual search is partly a side-effect of pre-attentive segmentation. Our VI model 
can in turn be improved using visual search as a diagnostic tool. 
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