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Abstract 

Independent component analysis of natural images leads to emer­
gence of simple cell properties, Le. linear filters that resemble 
wavelets or Gabor functions. In this paper, we extend ICA to 
explain further properties of VI cells. First, we decompose natural 
images into independent subspaces instead of scalar components. 
This model leads to emergence of phase and shift invariant fea­
tures, similar to those in VI complex cells. Second, we define a 
topography between the linear components obtained by ICA. The 
topographic distance between two components is defined by their 
higher-order correlations, so that two components are close to each 
other in the topography if they are strongly dependent on each 
other. This leads to simultaneous emergence of both topography 
and invariances similar to complex cell properties. 

1 Introduction 

A fundamental approach in signal processing is to design a statistical generative 
model of the observed signals. Such an approach is also useful for modeling the 
properties of neurons in primary sensory areas. The basic models that we consider 
here express a static monochrome image J (x, y) as a linear superposition of some 
features or basis functions bi (x, y): 

n 

J(x, y) = 2: bi(x, Y)Si (1) 
i=l 

where the Si are stochastic coefficients, different for each image J(x, y). Estimation 
of the model in Eq. (1) consists of determining the values of Si and bi(x, y) for all i 
and (x, y), given a sufficient number of observations of images, or in practice, image 
patches J(x,y). We restrict ourselves here to the basic case where the bi(x,y) form 
an invertible linear system. Then we can invert Si =< Wi, J > where the Wi denote 
the inverse filters, and < Wi, J >= L.x,y Wi(X, y)J(x, y) denotes the dot-product. 
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The Wi (x, y) can then be identified as the receptive fields of the model simple cells, 
and the Si are their activities when presented with a given image patch I(x, y). 

In the basic case, we assume that the Si are nongaussian, and mutually independent. 
This type of decomposition is called independent component analysis (ICA) [3, 9, 
1, 8], or sparse coding [13]. Olshausen and Field [13] showed that when this model 
is estimated with input data consisting of patches of natural scenes, the obtained 
filters Wi(X,y) have the three principal properties of simple cells in VI: they are 
localized, oriented, and bandpass (selective to scale/frequency). Van Hateren and 
van der Schaaf [15] compared quantitatively the obtained filters Wi(X, y) with those 
measured by single-cell recordings of the macaque cortex, and found a good match 
for most of the parameters. 

We show in this paper that simple extensions of the basic ICA model explain emer­
gence of further properties of VI cells: topography and the invariances of complex 
cells. Due to space limitations, we can only give the basic ideas in this paper. More 
details can be found in [6, 5, 7]. 

First, using the method of feature subspaces [11], we model the response of a com­
plex cell as the norm of the projection of the input vector (image patch) onto a 
linear subspace, which is equivalent to the classical energy models. Then we maxi­
mize the independence between the norms of such projections, or energies. Thus we 
obtain features that are localized in space, oriented, and bandpass, like those given 
by simple cells, or Gabor analysis. In contrast to simple linear filters, however, the 
obtained feature subspaces also show emergence of phase invariance and (limited) 
shift or translation invariance. Maximizing the independence, or equivalently, the 
sparseness of the norms of the projections to feature subspaces thus allows for the 
emergence of exactly those invariances that are encountered in complex cells. 

Second, we extend this model of independent subspaces so that we have overlapping 
subspaces, and every subspace corresponds to a neighborhood on a topographic grid. 
This is called topographic ICA, since it defines a topographic organization between 
components. Components that are far from each other on the grid are independent, 
like in ICA. In contrast, components that are near to each other are not independent: 
they have strong higher-order correlations. This model shows emergence of both 
complex cell properties and topography from image data. 

2 Independent subspaces as complex cells 

In addition to the simple cells that can be modelled by basic ICA, another important 
class of cells in VI is complex cells. The two principal properties that distinguish 
complex cells from simple cells are phase invariance and (limited) shift invariance. 
The purpose of the first model in this paper is to explain the emergence of such 
phase and shift invariant features using a modification of the ICA model. The 
modification is based on combining the principle of invariant-feature subspaces [11] 
and the model of multidimensional independent component analysis [2]. 

Invariant feature subspaces. The principle of invariant-feature subspaces 
states that one may consider an invariant feature as a linear subspace in a feature 
space. The value of the invariant, higher-order feature is given by (the square of) the 
norm of the projection of the given data point on that subspace, which is typically 
spanned by lower-order features. A feature subspace, as any linear subspace, can 
always be represented by a set of orthogonal basis vectors, say Wi(X, y), i = 1, ... , m, 
where m is the dimension of the subspace. Then the value F(I) of the feature F 
with input vector I(x, y) is given by F(I) = L::l < Wi, I >2, where a square root 
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might be taken. In fact, this is equivalent to computing the distance between the 
input vector I (X, y) and a general linear combination of the basis vectors (filters) 
Wi(X, y) of the feature subspace [11]. In [11], it was shown that this principle, when 
combined with competitive learning techniques, can lead to emergence of invariant 
image features. 

Multidimensional independent component analysis. In multidimensional 
independent component analysis [2] (see also [12]), a linear generative model as in 
Eq. (1) is assumed. In contrast to ordinary leA, however, the components (re­
sponses) Si are not assumed to be all mutually independent. Instead, it is assumed 
that the Si can be divided into couples, triplets or in general m-tuples, such that 
the Si inside a given m-tuple may be dependent on each other, but dependencies 
between different m-tuples are not allowed. Every m-tuple of Si corresponds to m 
basis vectors bi(x, y). The m-dimensional probability densities inside the m-tuples 
of Si is not specified in advance in the general definition of multidimensional leA [2]. 
In the following, let us denote by J the number of independent feature subspaces, 
and by Sj,j = 1, ... , J the set of the indices of the Si belonging to the subspace of 
index j . 

Independent feature subspaces. Invariant-feature subspaces can be embedded 
in multidimensional independent component analysis by considering probability dis­
tributions for the m-tuples of Si that are spherically symmetric, i.e. depend only 
on the norm. In other words, the probability density Pj (.) of the m-tuple with 
index j E {1, ... , J}, can be expressed as a function of the sum of the squares of the 
si,i E Sj only. For simplicity, we assume further that the Pj(') are equal for all j, 
i.e. for all subspaces. 

Assume that the data consists of K observed image patches I k (x, y), k = 1, ... , K. 
Then the logarithm of the likelihood L of the data given the model can be expressed 
as 

K J 

10gL(wi(x, y), i = L.n) = L L 10gp(L < Wi, h >2) + Klog I det WI (2) 
k=1 j=1 iESj 

where P(LiESj sT) = pj(si,i E Sj) gives the probability density inside the j-th 
m-tuple of Si, and W is a matrix containing the filters Wi(X, y) as its columns. 

As in basic leA, prewhitening of the data allows us to consider the Wi(X, y) to be 
orthonormal, and this implies that log I det WI is zero [6]. Thus we see that the 
likelihood in Eq. (2) is a function of the norms of the projections of Ik(x,y) on 
the subspaces indexed by j, which are spanned by the orthonormal basis sets given 
by Wi(X, y), i E Sj. Since the norm of the projection of visual data on practically 
any subspace has a supergaussian distribution, we need to choose the probability 
density P in the model to be sparse [13], i.e. supergaussian [8]. For example, we 
could use the following probability distribution 

logp( L st) = -O:[L s~11/2 + {3, (3) 
iESj iESj 

which could be considered a multi-dimensional version of the exponential distribu­
tion. Now we see that the estimation of the model consists of finding subspaces 
such that the norms of the projections of the (whitened) data on those subspaces 
have maximally sparse distributions. 

The introduced "independent (feature) subspace analysis" is a natural generalization 
of ordinary leA. In fact, if the projections on the subspaces are reduced to dot­
products, i.e. projections on 1-D subs paces , the model reduces to ordinary leA 
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(provided that, in addition, the independent components are assumed to have non­
skewed distributions). It is to be expected that the norms of the projections on 
the subspaces represent some higher-order, invariant features. The exact nature of 
the invariances has not been specified in the model but will emerge from the input 
data, using only the prior information on their independence. 

When independent subspace analysis is applied to natural image data, we can iden­
tify the norms of the projections (2:iESj st)1/2 as the responses of the complex 
cells. If the individual filter vectors Wi(X, y) are identified with the receptive fields 
of simple cells, this can be interpreted as a hierarchical model where the complex 
cell response is computed from simple cell responses Si, in a manner similar to the 
classical energy models for complex cells. Experiments (see below and [6]) show 
that the model does lead to emergence of those invariances that are encountered in 
complex cells. 

3 Topographic leA 

The independent subspace analysis model introduces a certain dependence structure 
for the components Si. Let us assume that the distribution in the subspace is sparse, 
which means that the norm of the projection is most of the time very near to zero. 
This is the case, for example, if the densities inside the subspaces are specified as 
in (3). Then the model implies that two components Si and Sj that belong to the 
same subspace tend to be nonzero simultaneously. In other words, s; and S] are 
positively correlated. This seems to be a preponderant structure of dependency in 
most natural data. For image data, this has also been noted by Simoncelli [14). 

Now we generalize the model defined by (2) so that it models this kind of depen­
dence not only inside the m-tuples, but among all ''neighboring'' components. A 
neighborhood relation defines a topographic order [10). (A different generalization 
based on an explicit generative model is given in [5].) We define the model by the 
following likelihood: 

K n n 

10gL(wi(x,y),i = 1, ... ,n) = LLG(Lh(i,j) < Wi,h >2) +KlogldetWI (4) 
k=I j=l i=l 

Here, h(i, j) is a neighborhood function, which expresses the strength of the con­
nection between the i-th and j-th units. The neighborhood function can be defined 
in the same way as with the self-organizing map [10). Neighborhoods can thus be 
defined as one-dimensional or two-dimensional; 2-D neighborhoods can be square 
or hexagonal. A simple example is to define a 1-D neighborhood relation by 

h(i,j) = {I, if Ii - ~I ~ m 
0, otherwIse. 

(5) 

The constant m defines here the width of the neighborhood. 

The function G has a similar role as the log-density of the independent components 
in classic ICA. For image data, or other data with a sparse structure, G should be 
chosen as in independent subspace analysis, see Eq. (3). 

Properties of the topographic leA model. Here, we consider for simplicity 
only the case of sparse data. The first basic property is that all the components Si are 
uncorrelated, as can be easily proven by symmetry arguments [5]. Moreover, their 
variances can be defined to be equal to unity, as in classic ICA. Second, components 
Si and S j that are near to each other, Le. such that h( i, j) is significantly non-zero, 
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tend to be active (non-zero) at the same time. In other words, their energies sf 
and s; are positively correlated. Third, latent variables that are far from each 
other are practically independent. Higher-order correlation decreases as a function 
of distance, assuming that the neighborhood is defined in a way similar to that in 
(5). For details, see [5]. 

Let us note that our definition of topography by higher-order correlations is very 
different from the one used in practically all existing topographic mapping methods. 
Usually, the distance is defined by basic geometrical relations like Euclidean distance 
or correlation. Interestingly, our principle makes it possible to define a topography 
even among a set of orthogonal vectors whose Euclidean distances are all equal. 
Such orthogonal vectors are actually encountered in leA, where the basis vectors 
and filters can be constrained to be orthogonal in the whitened space. 

4 Experiments with natural image data 

We applied our methods on natural image data. The data was obtained by taking 
16 x 16 pixel image patches at random locations from monochrome photographs 
depicting wild-life scenes (animals, meadows, forests, etc.). Preprocessing consisted 
of removing the De component and reducing the dimension of the data to 160 by 
peA. For details on the experiments, see [6, 5]. 

Fig. 1 shows the basis vectors of the 40 feature subspaces (complex cells), when 
subspace dimension was chosen to be 4. It can be seen that the basis vectors 
associated with a single complex cell all have approximately the same orientation 
and frequency. Their locations are not identical, but close to each other. The phases 
differ considerably. Every feature subspace can thus be considered a generalization 
of a quadrature-phase filter pair as found in the classical energy models, enabling 
the cell to be selective to some given orientation and frequency, but invariant to 
phase and somewhat invariant to shifts. Using 4 dimensions instead of 2 greatly 
enhances the shift invariance of the feature subspace. 

In topographic leA, the neighborhood function was defined so that every neighbor­
hood consisted of a 3 x 3 square of 9 units on a 2-D torus lattice [10]. The obtained 
basis vectors, are shown in Fig. 2. The basis vectors are similar to those obtained 
by ordinary leA of image data [13, 1]. In addition, they have a clear topographic 
organization. In addition, the connection to independent subspace analysis is clear 
from Fig. 2. Two neighboring basis vectors in Fig. 2 tend to be of the same orienta­
tion and frequency. Their locations are near to each other as well. In contrast, their 
phases are very different. This means that a neighborhood of such basis vectors, i.e. 
simple cells, is similar to an independent subspace. Thus it functions as a complex 
cell. This was demonstrated in detail in [5]. 

5 Discussion 

We introduced here two extensions of leA that are especially useful for image 
modelling. The first model uses a subspace representation to model invariant fea­
tures. It turns out that the independent subspaces of natural images are similar 
to complex cells. The second model is a further extension of the independent sub­
space model. This topographic leA model is a generative model that combines 
topographic mapping with leA. As in all topographic mappings, the distance in 
the representation space (on the topographic "grid") is related to some measure of 
distance between represented components. In topographic leA, the distance be­
tween represented components is defined by higher-order correlations, which gives 
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the natural distance measure in the context of leA. 

An approach closely related to ours is given by Kohonen's Adaptive Subspace Self­
Organizing Map [11). However, the emergence of shift invariance in [11) was condi­
tional to restricting consecutive patches to come from nearby locations in the image, 
giving the input data a temporal structure like in a smoothly changing image se­
quence. Similar developments were given by F6ldiak [4). In contrast to these two 
theories, we formulated an explicit image model. This independent subspace analy­
sis model shows that emergence of complex cell properties is possible using patches 
at random, independently selected locations, which proves that there is enough in­
formation in static images to explain the properties of complex cells. Moreover, by 
extending this subspace model to model topography, we showed that the emergence 
of both topography and complex cell properties can be explained by a single principle: 
neighboring cells should have strong higher-order correlations. 
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Figure 1: Independent subspaces of natural image data. The model gives Gabor­
like basis vectors for image windows. Every group of four basis vectors corresponds 
to one independent feature subspace, or complex cell. Basis vectors in a subspace 
are similar in orientation, location and frequency. In contrast, their phases are very 
different. 

.-
• 

• 

• I - " 

~ IiioiII -
iii 

I I • • iii I; 
I 

• .. .. , • 'i .. " • ~ 

Figure 2: Topographic leA of natural image data. This gives Gabor-like basis vec­
tors as well. Basis vectors that are similar in orientation, location and/or frequency 
are close to each other. The phases of near by basis vectors are very different, giving 
each neighborhood properties similar to a complex cell. 


