
Reinforcement Learning Using Approximate
Belief States

Andres Rodriguez *
Artificial Intelligence Center

SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025

rodriguez@ai.sri.com

Abstract

Ronald Parr, Daphne Koller
Computer Science Department

Stanford University
Stanford, CA 94305

{parr,koller}@cs.stanford.edu

The problem of developing good policies for partially observable Markov
decision problems (POMDPs) remains one of the most challenging ar­
eas of research in stochastic planning. One line of research in this area
involves the use of reinforcement learning with belief states, probabil­
ity distributions over the underlying model states. This is a promis­
ing method for small problems, but its application is limited by the in­
tractability of computing or representing a full belief state for large prob­
lems. Recent work shows that, in many settings, we can maintain an
approximate belief state, which is fairly close to the true belief state. In
particular, great success has been shown with approximate belief states
that marginalize out correlations between state variables. In this paper,
we investigate two methods of full belief state reinforcement learning and
one novel method for reinforcement learning using factored approximate
belief states. We compare the performance of these algorithms on several
well-known problem from the literature. Our results demonstrate the im­
portance of approximate belief state representations for large problems.

1 Introduction

The Markov Decision Processes (MDP) framework [2] is a good way of mathematically
formalizing a large class of sequential decision problems involving an agent that is inter­
acting with an environment. Generally, an MDP is defined in such a way that the agent has
complete knowledge of the underlying state of the environment. While this formulation
poses very challenging research problems, it is still a very optimistic modeling assumption
that is rarely realized in the real world. Most of the time, an agent must face uncertainty
or incompleteness in the information available to it. An extension of this formalism that
generalizes MDPs to deal with this uncertainty is given by partially observable Markov
Decision Processes (POMDPs) [1, 11] which are the focus of this paper.

Solving a POMDP means finding an optimal behavior policy 7l'*, that maps from the agent's
available knowledge of the environment, its belief state, to actions. This is usually done
through a function, V, that assigns values to belief states. In the fully observable (MDP)

"The work presented in this paper was done while the first author was at Stanford University.

Reinforcement Learning Using Approximate Belief States 1037

case, a value function can be computed efficiently for reasonably sized domains. The
situation is somewhat different for POMDPs, where finding the optimal policy is PSPACE­
hard in the number of underlying states [6]. To date, the best known exact algorithms to
solve POMDPs are taxed by problems with a few dozen states [5].

There are several general approaches to approximating POMDP value functions using rein­
forcement learning methods and space does not permit a full review of them. The approach
upon which we focus is the use of a belief state as a probability distribution over underlying
model states. This is in contrast to methods that manipulate augmented state descriptions
with finite memory [9, 12] and methods that work directly with observations [8] .

The main advantage of a probability distribution is that it summarizes all of the informa­
tion necessary to make optimal decisions [1]. The main disadvantages are that a model
is required to compute a belief state, and that the task of representing and updating belief
states in large problems is itself very difficult. In this paper, we do not address the problem
of obtaining a model; our focus is on the the most effective way of using a model. Even
with a known model, reinforcement learning techniques can be quite competitive with ex­
act methods for solving POMDPs [lO]. Hence, we focus on extending the model-based
reinforcement learning approach to larger problems through the use of approximate belief
states. There are risks to such an approach: inaccuracies introduced by belief state approx­
imation could give an agent a hopelessly inaccurate perception of its relationship to the
environment.

Recent work [4], however, presents an approximate tracking approach, and provides theo­
retical guarantees that the result of this process cannot stray too far from the exact belief
state. In this approach, rather than maintaining an exact belief state, which is infeasible
in most realistically large problems, we maintain an approximate belief state, usually from
some restricted class of distributions. As the approximate belief state is updated (due to
actions and observations), it is continuously projected back down into this restricted class.
Specifically, we use decomposed belief states, where certain correlations between state
variables are ignored.

In this paper we present empirical results comparing three approaches to belief state rein­
forcement learning. The most direct approach is the use of a neural network with one input
for each element of the full belief state. The second is the SPOVA method [lO], which
uses a function approximator designed for POMDPs and the third is the use of a neural net­
work with an approximate belief state as input. We present results for several well-known
problems in the POMDP literature, demonstrating that while belief state approximation is
ill-suited for some problems, it is an effective means of attacking large problems.

2 Basic Framework and Algorithms

A POMDP is defined as a tuple < S, A, 0, T, R, 0 > of three sets and three functions.
S is a set of states, A is a set of actions and ° is a set of observations. The transition
function T : S x A ~ II(S) specifies how the actions affect the state of the world. It can
be viewed as T(Si, a, S j) = P(S j la, sd, the probability that the agent reaches state S j if it
currently is in state Si and takes action a. The reward function R : S x A ~ 1R determines
the immediate reward received by the agent The observation model 0 : S x A ~ II(0)
determines what the agent perceives, depending on the environment state and the action
taken. O(s, a, 0) = P(ola, s) is the probability that the agent observes 0 when it is in state
s, having taken the action a.

1038 A. Rodriguez, R. Parr and D. Koller

2.1 POMDP belief states

A beliefstate, b, is defined as a probability distribution over all states S E S, where b(s),
represents probability that the environment is in state s. After taking action a and observing
0, the belief state is updated using Bayes rule:

1 1 1 O(S', a, 0) L.SES T(Si, a, s')b(sd
b (s) = P(s I a, 0, b) = =---::::-:--:,-,:'=--~--:-:-:---:­

L.sjES O(Sj, a, 0) L.siES T(Si' a, Sj)b(Si)

The size of an exact belief state is equal to the number of states in the model. For large
problems, maintaining and manipulating an exact belief state can be problematic even if
the the transition model has a compact representation [4]. For example, suppose the state
space is described via a set of random variables X = {Xl, ... ,Xn }, where each Xi takes
on values in some finite domain Val(Xi), a particular S defines a value Xi E VaJ(Xi) for
each variable Xi. The full belief state representation will be exponential in n. We use the
approximation method analyzed by Boyen and Koller [4], where the variables are parti­
tioned into a set of disjoint clusters C I ... Ck and belief functions, bl ... bk are maintained
over the variables in each cluster. At each time step, we compute the exact belief state, then
compute the individual belief functions by marginalizing out inter-cluster correlations. For
some assignment, Ci, to variables in C i , we obtain bi(Ci) = L.ygCl P(Ci' y). An approxi-

mation of the original, full belief state is then reconstructed as b(s) = n~=l bi (Ci).

By representing the belief state as a product of marginal probabilities, we are projecting
the belief state into a reduced space. While a full belief state representation for n state
variables would be exponential in n, the size of decomposed belief state representation is
exponential in the size of the largest cluster and additive in the number of clusters. For pro­
cesses that mix rapidly enough, the errors introduced by approximation will stay bounded
over time [4]. As discussed by Boyen and Koller [4], this type of decomposed belief state
is particularly suitable for processes that can themselves be factored and represented as a
dynamic Bayesian network [3]. In such cases we can avoid ever representing an exponen­
tially sized belief state. However, the approach is fully general, and can be applied in any
setting where the state is defined as an assignment of values to some set of state variables.

2.2 Value functions and policies for POMDPs

If one thinks of a POMOP as an MOP defined over belief states, then the well-known fixed
point equations for MOPs still hold. Specifically,

V*(b) = m~x [L b(s)R(s, a) + 'Y L P(ola, b)V*(bl)]

sES oED

where'Y is the discount factor and b' (defined above) is the next belief state. The optimal
policy is determined by the maximizing action for each belief state. In principle, we could
use Q-Iearning or value iteration directly to solve POMOPs. The main difficulty lies in the
fact that there are uncountably many belief states, making a tabular representation of the
value function impossible.

Exact methods for POMOPs use the fact that finite horizon value functions are piecewise­
linear and convex [11], ensuring a finite representation. While finite, this representation
can grow exponentially with the horizon, making exact approaches impractical in most set­
tings. Function approximation is an attractive alternative to exact methods. We implement
function approximation using a set of parameterized Q-functions, where Qa(b, W a) is the
reward-to-go for taking action a in belief state b. A value function is reconstructed from the
Q-functions as V(b) = maxa(Qa(b, W a)), and the update rule for Wa when a transition

Reinforcement Learning Using Approximate Belief States 1039

from state b to b' under action a with reward R is:

2.3 Function approximation architectures

We consider two types of function approximators. The first is a two-layer feedforward
neural network with sigmoidal internal units and a linear outermost layer. We used one
network for each Q function. For full belief state reinforcement learning, we used networks
with lSI inputs (one for each component of the belief state) and v'fSf hidden nodes. For
approximate belief state reinforcement learning, we used networks with one input for each
assignment to the variables in each cluster. If we had two clusters, for example, each with
3 binary variables, then our Q networks would each have 23 + 23 = 16 inputs. We kept the
number of hidden nodes for each network as the square root of the number of inputs.

Our second function approximator is SPOVA [10], which is a soft max function designed
to exploit the piecewise-linear structure of POMDP value functions. A SPOVA Q function
maintains a set of weight vectors Wal ... W ai, and is evaluated as:

In practice, a small value of k (usually 1.2) is adopted at the start of learning, making the
function very smooth. This is increased during learning until SPOVA closely approximates
a PWLC function of b (usually k = 8). We maintained one SPOVA Q function for each
action and assigned JiST vectors to each function. This gave O(IAIISI JiST) parameters
to both SPOVA and the full belief state neural network.

3 Empirical Results

We present results on several problems from the POMDP literature and present an extension
to a known machine repair problem that is designed to highlight the effects of approximate
belief states. Our results are presented in the form of performance graphs, where the value
of the current policy is obtained by taking a snapshot of the value function and measuring
the discounted sum of reward obtained by the resulting policy in simulation. We use "NN"
to refer to the neural network trained reinforcement learner trained with the full belief state
and the term "Decomposed NN" to refer to the neural network trained with an approxi­
mate belief which is decomposed as a product of marginals. We used a simple exploration
strategy, starting with a 0.1 probability of acting randomly, which decreased linearly to
0.01.

Due to space limitations, we are not able to describe each model in detail. However, we
used publicly available model description files from [5].1 Table 3.4 shows the running times
of the different methods. These are generally much lower than what would be required to
solve these problems using exact methods.

3.1 Grid Worlds

We begin by considering two grid worlds, a 4 x 3 world from [10] and a 60-state world from
[7]. The 4 x 3 world contains only 11 states and does not have a natural decomposition
into state variables, so we compared SPOVA only with the full belief state neural network.

I See hup:/Iwww.cs.brown.edu/research/ai/pomdp/index.html. Note that this file format specifies
a starting distribution for each problem and our results are reported with respect to this starting dis­
tribution.

1040

"

!

~ 0 5 /

o f·
/

.0.5 J

·1 50'---"""OOOO""""""20000-'--"""".L---"-""""'"c:--ISOOOO:::-"--60000-'--=' OOOO.L--",,,1IOOOO'"c:--90000,,-.--',OOOOO -.

A. Rodriguez, R. Parr and D. Koller

SPOVA-
NN -------

Oecompo.-l NN ______ /

01

o.

Figure 1: a) 3 x 4 Grid World, b) 60-state maze

The experimental results, which are averaged over 25 training runs and 100 simulations per
policy snapshot, are presented in Figure 1a. They show that SPOVA learns faster than the
neural network, but that the network does eventually catch up.

The 60-state robot navigation problem [7] was amenable to a decomposed belief state ap­
proximation since its underlying state space comes from the product of 15 robot positions
and 4 robot orientations. We decomposed the belief state with two clusters, one containing
a position state variable and the other containing an orientation state variable. Figure 1 b
shows results in which SPOVA again dominates. The decomposed NN has trouble with this
problem because the effects of position and orientation on the value function are not easily
decoupled, i.e., the effect of orientation on value is highly state-dependent. This meant that
the decomposed NN was forced to learn a much more complicated function of its inputs
than the function learned by the network using the full belief state.

3.2 Aircraft Identification

Aircraft identification is another problem studied in Cassandra's thesis. It includes sensing
actions for identifying incoming aircraft and actions for attacking threatening aircraft. At­
tacks against friendly aircraft are penalized, as are failures to intercept hostile aircraft. This
is a challenging problem because there is tension in deciding between the various sensors.

" Better sensors tend to make the base more visible to hostile aircraft, while more stealthy
sensors are less accurate. The sensors give information about both the aircraft's type and
distance from the base.

The state space of this problem is comprised of three main components. aircraft
type - eitherthe aircraft is a friend orit is a foe; distance -how far the aircraft
is currently from the base discretized into an adjustable number, d, of distinct distances;
vis ibi 1 i ty - a measure of how visible the base is to the approaching aircraft, which
is discretized into 5 levels.

We chose d = 10, gaving this problem 104 states. The problem has a natural decomposition
into state variables for aircraft type, distance and base visibility. The results for the three
algorithms are shown in Figure 2(a). This is the first problem where we start to see an
advantage from decomposing the belief state. For the decomposed NN, we used three
separate clusters, one for each variable, which meant that the network had only 17 inputs.
Not only did the simpler network learn faster, but it learned a better policy overall. We
believe that this illustrates an important point: even though SPOVA and the full belief state
neural network may be more expressive than the decomposed NN, the decomposed NN
is able to search the space of functions it can represent much more efficiently due to the
reduced number of parameters.

Reinforcement Learning Using Approximate Belief States 1041

so

SPOVA, -
NN ----- ­

DKompo!ll8d NN .

·20 O'--'-'~OOOOO"-:--:-200000'-'---"""""'OOO:---:-:""""""""""'SOOOOO~-:eooooo-:":-:-:--::700000"""""""'800000":::::-900000"""""'--''''''
1*IIIIonI

·20

SPOVA
NN

O.:.ompo!ll8d NN

o 10000 2IXlOO 30000 40000 50000 60000 70000 aoooo 90000 l00c00

lteratbns

Figure 2.: a) Aircraft Identification, b) Machine Maintenance

3.3 Machine Maintenance

Our last problem was the machine maintenance problem from Cassandra's database. The
problem assumes that there is a machine with a certain number of components. The quality
of the parts produced by the machine is determined by the condition of the components.
Each component can be in one of four conditions: good - the component is in good
condition; fair - the component has some amount of wear, and would benefit from
some maintenance; bad - the part is very worn and could use repairs; broken - the
part is broken and must be replaced. The status of the components is observable only if the
machine is completely disassembled.

Figure 2(b) shows performance results for this problem for the 4 component version of this
problem. At 256 states, it was at the maximum size for which a full belief state approach
was manageable. However, the belief state for this problem decomposes naturally into
clusters describing the status of each machine, creating a decomposed belief state with
just four components. The graph shows the dominance of this this simple decomposition
approach. We believe that this problem clearly demonstrates the advantage of belief state
decomposition: The decomposed NN learns a function of 16 inputs in fraction of the time
it takes for the full net or SPOVA to learn a lower-quality function of 256 inputs.

3.4 Running Times

The table below shows the running times for the different problems presented above. These
are generally much less than what would be required to solve these problems exactly. The
full NN and SPOVA are roughly comparable, but the decomposed neural network is con­
siderably faster. We did not exploit any problem structure in our approximate belief state
computation, so the time spent computing belief states is actually larger for the decom­
posed NN. The savings comes from the the reduction in the number of parameters used,
which reduced the number of partial derivatives computed. We expect the savings to be
significantly more substantial for processes represented in a factored way [3], as the ap­
proximate belief state propagation algorithm can also take advantage of this additional
structure.

4 Concluding Remarks

We have a proposed a new approach to belief state reinforcement learning through the use
of approximate belief states. Using well-known examples from the POMDP literature, we
have compared approximate belief state reinforcement learning with two other methods

1042

Problem
3x4
Hallway
Aircraft ID
MachineM.

SPOVA
19.1 s
32.8 min
38.3 min

2.5 h

NN
13.0s
47.1 min
49.9 min

2.6 h

A. Rodriguez, R. Parr and D. Koller

Decomposed NN

3.2 min
4.4 min
4.7 min

Table 1: Run times (in seconds, minutes or hours) for the different algorithms

that use exact belief states. Our results demonstrate that, while approximate belief states
may not be ideal for tightly coupled problem features, such as the position and orientation
of a robot, they are a natural and effective means of addressing some large problems. Even
for the medium-sized problems we showed here, approximate belief state reinforcement
learning can outperform full belief state reinforcement learning using fewer trials and much
less CPU time. For many problems, exact belief state methods will simply be impractical
and approximate belief states will provide a tractable alternative.

Acknowledgements

This work was supported by the ARO under the MURI program "Integrated Approach to
Intelligent Systems," by ONR contract N66001-97-C-8554 under DARPA's HPKB pro­
gram, and by the generosity of the Powell Foundation and the Sloan Foundation.

References

[1] K. J. Astrom. Optimal control of Markov decision processes with incomplete state
estimation. l. Math. Anal. Applic., 10:174-205,1965.

[2] R.E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] C. Boutilier, T. Dean, and S. Hanks . Decision theoretic planning: Structural assump­
tions and computational leverage. Journal of Artijiciallntelligence Research, 1999.

[4] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In
Proc. UAI, 1998.

[5] A. Cassandra. Exact and approximate Algorithms for partially observable Markov
Decision Problems. PhD thesis, Computer Science Dept., Brown Univ., 1998.

[6] M. Littman. Algorithms for Sequential Decision Making. PhD thesis, Computer
Science Dept., Brown Univ., 1996.

[7] M. Littman, A. Cassandra, and L.P. Kaelbling. Learning policies for partially observ­
able environments: Scaling up. In Proc. ICML, pages 362-370, 1996.

[8] J. Loch and S. Singh. Using eligibility traces to find the best memory less policy in
partially observable markov decision processes. In Proc. ICML. Morgan Kaufmann,
1998.

[9] Andrew R. McCallum. Overcoming incomplete perception with utile distinction
memory. In Proc.ICML, pages 190-196, 1993.

[10] Ronald Parr and Stuart Russell. Approximating optimal policies for partially observ­
able stochastic domains. In Proc. IlCAI, 1995.

[11] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable
Markov processes over a finite horizon. Operations Research, 21: 1071-1088,1973.

[12] M. Wiering and J. Schmidhuber. HQ-leaming: Discovering Markovian subgoals for
non-Markovian reinforcement learning. Technical report, Istituo Daile Molle di Studi
sull'Intelligenza Artificiale, 1996.

