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Abstract 

Everybody "knows" that neural networks need more than a single layer 
of nonlinear units to compute interesting functions. We show that this is 
false if one employs winner-take-all as nonlinear unit: 

• Any boolean function can be computed by a single k-winner-take­
all unit applied to weighted sums of the input variables. 

• Any continuous function can be approximated arbitrarily well by 
a single soft winner-take-all unit applied to weighted sums of the 
input variables. 

• Only positive weights are needed in these (linear) weighted sums. 
This may be of interest from the point of view of neurophysiology, 
since only 15% of the synapses in the cortex are inhibitory. In addi­
tion it is widely believed that there are special microcircuits in the 
cortex that compute winner-take-all. 

• Our results support the view that winner-take-all is a very useful 
basic computational unit in Neural VLS!: 

o it is wellknown that winner-take-all of n input variables can 
be computed very efficiently with 2n transistors (and a to­
tal wire length and area that is linear in n) in analog VLSI 
[Lazzaro et at., 1989] 

o we show that winner-take-all is not just useful for special pur­
pose computations, but may serve as the only nonlinear unit for 
neural circuits with universal computational power 

o we show that any multi-layer perceptron needs quadratically in 
n many gates to compute winner-take-all for n input variables, 
hence winner-take-all provides a substantially more powerful 
computational unit than a perceptron (at about the same cost 
of implementation in analog VLSI). 

Complete proofs and further details to these results can be found in 
[Maass, 2000]. 
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1 Introduction 

Computational models that involve competitive stages have so far been neglected in com­
putational complexity theory, although they are widely used in computational brain models, 
artificial neural networks, and analog VLSI. The circuit of [Lazzaro et aI., 1989] computes 
an approximate version of winner-take-all on n inputs with just 2n transistors and wires 
oflength O(n), with lateral inhibition implemented by adding currents on a single wire of 
length O( n). Numerous other efficient implementations of winner-take-all in analog VLSI 
have subsequently been produced. Among them are circuits based on silicon spiking neu­
rons ([Meador and Hylander, 1994], [Indiveri, 1999]) and circuits that emulate attention in 
artificial sensory processing ([Horiuchi et aI., 1997], [Indiveri, 1999]). Preceding analytical 
results on winner-take-all circuits can be found in [Grossberg, 1973] and [Brown, 1991]. 

We will analyze in section 4 the computational power of the most basic competitive compu­
tational operation: winner-take-all (= l-WTAn). In section 2 we will discuss the somewhat 
more complex operation k-winner-take-all (k-WTAn ), which has also been implemented 
in analog VLSI [Urahama and Nagao, 1995]. Section 3 is devoted to soft winner-take-all, 
which has been implemented by [Indiveri, 1999] in analog VLSJ via temporal coding of 
the output. 

Our results shows that winner-take-all is a surprisingly powerful computational module 
in comparison with threshold gates (= McCulloch-Pitts neurons) and sigmoidal gates. 
Our theoretical analysis also provides answers to two basic questions that have been 
raised by neurophysiologists in view of the well-known asymmetry between excitatory 
and inhibitory connections in cortical circuits: how much computational power of neural 
networks is lost if only positive weights are employed in weighted linear sums, and how 
much learning capability is lost if only the positive weights are subject to plasticity. 

2 Restructuring Neural Circuits with Digital Output 

We investigate in this section the computational power of a k-winner-take-all gate comput-
ing the function k - WT An : ~n -+ {a, l}n 

k- WTAn 

... 

with 

bi = 1 +-+ Xi is among the k largest ofthe inputs Xl, ... ,Xn . 

[precisely: bi = 1 +-+ Xj > Xi holds for at most k - 1 indices j] 

E~ 

E {a, I} 
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Theorem 1. Any two-layer feedf01ward circuit C (with m analog or binary input 
variables and one binary output variable) consisting of threshold gates (=percep­
trons) can be simulated by a circuit W consisting of a single k-winner-take-all gate 
k-WTA n I applied to weighted sums of the input variables with positive weights. This holds 
for all digital inputs. and for analog inputs except for some set S ~ IR.m ~f inputs that has 
measure O. 

In particular, any booleanfunction 

f : {D , l}m -+ {O, I} 

can be computed by a single k-winner-take-all gate applied to positive weighted sums of 
the input bits. 

Remarks 

I. If C has polynomial size and integer weights, whose size is bounded by a polyno­
mial in m, then the number oflinear gates S in W can be bounded by a polynomial 
in m, and all weights in the simulating circuit W are natural numbers whose size 
is bounded by a polynomial in m. 

2. The exception set of measure D in this result is a union of finitely many hyper­
planes in lRm. One can easily show that this exception set S of measure D in 
Theorem 1 is necessary. 

3. Any circuit that has the structure ofW can be converted back into a 2-layerthresh­
old circuit, with a number of gates that is quadratic in the number of weighted 
sums (=1inear gates) in W . This relies on the construction in section 4. 

Proof of Theorem 1: Since the outputs of the gates on the hidden layer of C are from 
{O, I}, we can assume without loss of generality that the weights a1 , . .. ,an of the out­
put gate G of C are from { - 1, 1} (see for example [Siu et al., 1995] for details; one first 
observes that it suffices to use integer weights for threshold gates with binary inputs, one 
can then nonnalize these weights to values in { -1,1} by duplicating gates on the hidden 

n 
layer of C). Thus for any circuit input & E IR.m we have C(&) = 1 ¢:} L: ajG j (&) 2: e, 

j=1 
where G1, ... ,Gn are the threshold gates on the hidden layer of C, a1 , .. . , an are from 
{-I, I}, and e is the threshold of the output gate G. In order to eliminate the negative 
weights in G we replace each gate G j for which a j = -1 by another threshold gate (; j so 
that (;j(&) = 1 - Gj (&) for all & E IR.m except on some hyperpJane.2 We set Gj := Gj 

for all j E {I, . . . ,n} with a j = 1. Then we have for all & E lRm , except for & from some 
exception set S consisting of up to n hyperplanes, 

n n 

2: a j Gj(&) = 2: (;j(&) -I{j E {I , ... , n}: aj = -1}1· 
j=1 j=1 

n , , 
Hence C(&) = 1 ¢:} L: Gj (&) 2: k for all Z E IR.m - S, for some suitable kE N. 

j=1 

Let w{ , . .. , win E lR be the weights and e j E IR. be the threshold of gate (; j ,j = 1, .. . , n. 

I of which we only use its last output bit 
2We exploit here that --, I:7:1 W iZi ;::: 0 <=? I:7:1 (-W i )Zi > -0 for arbitrary Wi , Zi, 0 E R . 
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b 

ZI Zm 

b 

'" andback 

i:w{>O 

i :wt <0 

and 

i:w{<O 
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c 

G1 , ••. ,Gn are arbitrary threshold gates, G 
is a threshold gate with weights from {-I, I} 

w 

SI, ... ,Sn+1 are linear gates (with positive 
weights only, which are sums of absolute val­
ues of weights from the gates G 1 , . .• ,G n) 

for j = 1, ... ,n 
l#j i:wf>o 

n 

Sn+1 := L L Iw11zi 
j=1 i:w1>o 

we have for every j E {I, ... ,n} and every £ E ~m : 

Sn+l ~ Sj ¢:} L Iw11zi - L Iw11zi > ej ¢:} Gj (£) = 1 . 
i:w{>O i:w{<O 

This implies that the (n + l}st output bn+1 of the k-winner-take-all gate k-WTAn+1 for 
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k := n - k + 1 applied to Sl, ... , Sn+l satisfies 

bn+1 = 1 ¢:> Ib E {I, ... ,n+ I}: Sj > Sn+dl ~ n - k 
¢:> Ib E {I, ... ,n+ I}: Sn+1 ~ Sj}1 ~ k+ 1 

¢:> Ib E {I, ... ,n}: Sn+1 ~ Sj}1 ~ k 
n A A 

¢:> L: Gj(~) ~ k 
j=l 

¢:> C(~) = 1 . 

Note that all the coefficients in the sums Sl, ... , Sn+1 are positive. 

3 Restructuring Neural Circuits with Analog Output 
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• 

In order to approximate arbitrary continuous functions with values in [0, 1] by circuits that 
have a similar structure as those in the preceding section, we consider here a variation of a 
winner-take-all gate that outputs analog numbers between 0 and I, whose values depend on 
the rank of the corresponding input in the linear order of all the n input numbers. One may 
argue that such gate is no longer a "winner-take-all" gate, but in agreement with common 
terminology we refer to it as a soft winner-take-all gate. Such gate computes a function 
from m.n into [0, l]n 

Xn ElR 

soft winner-take-all 

... 
E [0,1] 

whose ith output Ti E [0,1] is roughly proportional to the rank of Xi among the numbers 
Xl, ••. , X n . More precisely: for some parameter TEN we set 

l{jE{I, ... ,n}: xi~xj}I-~ 
Ti = T ' 

rounded to 0 or 1 if this value is outside [0,1]. Hence this gate focuses on those 
inputs Xi whose rank among the n input numbers Xl, • •. ,Xn belongs to the set 
{~, ~ + 1, ... , min{n, T + ~}}. These ranks are linearly scaled into [0, 1].3 

Theorem 2. Circuits consisting oj a single soft winner-take-all gate (oJ which we only use 
its first output T1) applied to positive weighted sums oj the input variables are universal 
approximatorsJor arbitrary continuousJunctionsJrom lRm into [0, 1]. • 

3It is shown in [Maass, 2000] that actually any continuous monotone scaling into [0,1] can be 
used instead. 
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A circuit of the type considered in Theorem 2 (with a soft winner-take-all gate applied to 
n positive weighted sums 51, ... ,5n ) has a very simple geometrical interpretation: Over 
each point &: of the input "plane" Rm we consider the relative heights of the n hyperplanes 
HI, ... ,Hn defined by the n positive weighted sums 51, .. . ,5n. The circuit output de­
pends only on how many ofthe otherhyperplanesH2 , ... , Hn are above HI at this point£. 

4 A Lower Bound Result for Winner-Take-All 

One can easily see that any k-WTA gate with n inputs can be computed by a 2-layer thresh­
old circuit consisting of (~) + n threshold gates: 

I ": 
, 

bl bi 

, 
, 

, 

? 
X · > X· l _ J 

, 

? 

L:~n-k 

Xn 

I I 
b· J bn 

Hence the following result provides an optima/lower bound. 

G) threshold gates 

n threshold gates 

Theorem 3. Any JeedJmward threshold circuit (=multi-Iayer perceptron) that computes 
l-WTAJor n inputs needs to have at least (~) + n gates. • 

5 Conclusions 

The lower bound result of Theorem 3 shows that the computational power of winner-take­
all is quite large, even if compared with the arguably most powerful gate commonly studied 
in circuit complexity theory: the threshold gate (also referred to a McCulloch-Pitts neuron 
or perceptron). 
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It is well known ([Minsky and Papert, 1969]) that a single threshold gate is not able to 
compute certain important functions, whereas circuits of moderate (i.e., polynomial) size 
consisting of two layers of threshold gates with polynomial size integer weights have re­
markable computational power (see [Siu et aI., 1995]). We have shown in Theorem 1 that 
any such 2-layer(i.e., I hidden layer) circuit can be simulated by a single k-winner-take-all 
gate, applied to polynomially many weighted sums with positive integer weights of poly­
nomial size. 

We have also analyzed the computational power of soft winner-take-all gates in the context 
of analog computation. It is shown in Theorem 2 that a single soft winner-take-all gate 
may serve as the only nonlinearity in a class of circuits that have universal computational 
power in the sense that they can approximate any continuous functions. 

Furthermore our novel universal approximators require only positive linear operations be­
sides soft winner-take-all, thereby showing that in principle no computational power is lost 
if in a biological neural system inhibition is used exclusively for unspecific lateral inhibi­
tion, and no adaptive flexibility is lost if synaptic plasticity (i.e., "learning") is restricted to 
excitatory synapses. 

Our somewhat surprising results regarding the computational power and universality of 
winner-take-all point to further opportunities for low-power analog VLSI chips, since 
winner-take-all can be implemented very efficiently in this technology. 
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