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Abstract 

We investigate the behavior of a Hebbian cell assembly of spiking 
neurons formed via a temporal synaptic learning curve. This learn­
ing function is based on recent experimental findings . It includes 
potentiation for short time delays between pre- and post-synaptic 
neuronal spiking, and depression for spiking events occuring in the 
reverse order. The coupling between the dynamics of the synaptic 
learning and of the neuronal activation leads to interesting results. 
We find that the cell assembly can fire asynchronously, but may 
also function in complete synchrony, or in distributed synchrony. 
The latter implies spontaneous division of the Hebbian cell assem­
bly into groups of cells that fire in a cyclic manner. We invetigate 
the behavior of distributed synchrony both by simulations and by 
analytic calculations of the resulting synaptic distributions. 

1 Introduction 

The Hebbian paradigm that serves as the basis for models of associative memory is 
often conceived as the statement that a group of excitatory neurons (the Hebbian 
cell assembly) that are coupled synaptically to one another fire together when a 
subset of the group is being excited by an external input. Yet the details of the 
temporal spiking patterns of neurons in such an assembly are still ill understood. 
Theoretically it seems quite obvious that there are two general types of behavior: 
synchronous neuronal firing, and asynchrony where no temporal order exists in the 
assembly and the different neurons fire randomly but with the same overall rate. 
Further subclassifications were recently suggested by [BruneI, 1999]. Experimen­
tally this question is far from being settled because evidence for the associative 
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memory paradigm is quite scarce. On one hand, one possible realization of associa­
tive memories in the brain was demonstrated by [Miyashita, 1988] in the inferotem­
poral cortex. This area was recently reinvestigated by [Yakovlev et al., 1998] who 
compared their experimental results with a model of asynchronized spiking neurons. 
On the other hand there exists experimental evidence [Abeles, 1982] for temporal 
activity patterns in the frontal cortex that Abeles called synfire-chains. Could they 
correspond to an alternative type of synchronous realization of a memory attractor? 

To answer these questions and study the possible realizations of attractors in 
cortical-like networks we investigate the temporal structure of an attractor assuming 
the existence of a synaptic learning curve that is continuously applied to the mem­
ory system. This learning curve is motivated by the experimental observations of 
[Markram et al., 1997, Zhang et al., 1998] that synaptic potentiation or depression 
occurs within a critical time window in which both pre- and post-synaptic neurons 
have to fire. If the pre-synaptic neuron fires first within 30ms or so, potentiation 
will take place. Depression is the rule for the reverse order. 

The regulatory effects of such a synaptic learning curve on the synapses of 
a single neuron that is subjected to external inputs were investigated by 
[Abbott and Song, 1999] and by [Kempter et al., 1999]. We investigate here the 
effect of such a rule within an assembly of neurons that are all excited by the 
same external input throughout a training period, and are allowed to influence one 
another through their resulting sustained activity. 

2 The Model 

We study a network composed of N E excitatory and NJ inhibitory integrate-and-fire 
neurons. Each neuron in the network is described by its subthreshold membrane 
potential Vi{t) obeying 

. 1 
Vi{t) = - - Vi{t) + R1i(t) 

Tn 
(1) 

where Tn is the neuronal integration time constant. A spike is generated when Vi{t) 
reaches the threshold Vrest + fJ, upon which a refractory period of TRP is set on and 
the membrane potential is reset to Vreset where Vrest < Vreset < Vrest + fJ. Ii{t) is 
the sum of recurrent and external synaptic current inputs. The net synaptic input 
charging the membrane of excitatory neuron i at time t is 

R1i(t) = L J~E{t) L 0 (t - t~ - Td) - L Ji~J L 0 (t - tj - Td) + r xt (2) 
j I j m 

summing over the different synapses of j = 1, ... , NE excitatory neurons and of 
j = 1, ... ,NJ inhibitory neurons, with postsynaptic efficacies J~E{t) and Ji~J re­
spectively. The sum over 1 (m) represents a sum on different spikes arriving at 
synapse j, at times t = t; + Td (t = tj + Td), where t~ (tj) is the emission time of 
the l-th (m-th) spike from the excitatory (inhibitory) neuron j and Td is the synap­
tic delay. Iext, the external current, is assumed to be random and independent at 
each neuron and each time step, drawn from a Poisson distribution with mean A ext. 
Analogously, the synaptic input to the inhibitory neuron i at time tis 

j j m 

We assume full connectivity among the excitatory neurons, but only partial con­
nectivity between all other three types of possible connnections, with connection 
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probabilities denoted by eEl, e l E and C l I. In the following we will report simula­
tion results in which the synaptic delays Td were assigned to each synapse, or pair of 
neurons, randomly, chosen from some finite set of values. Our analytic calculation 
will be done for one fixed value of this delay parameter. 

The synaptic efficacies between excitatory neurons are assumed to be potentiated 
or depressed according to the firing patterns of the pre- and post-synaptic neurons. 
In addition we allow for a uniform synaptic decay. Thus each excitatory synapse 
obeys 

(4) 

where the synaptic decay constant Ts is assumed to be very large compared to the 
membrane time constant Tn. J/JE(t) are constrained to vary in the range [0, Jma:~ ]. 
The change in synaptic efficacy is defined by Fij (t), as 

Fij(t) = L [6(t - t:)Kp(t; - t:) + 6(t - t;)KD(t; - t:)] (5) 
k ,l 

where Kp and KD are the potentiation and depression branches of the kernel func­
tion 

K(6) = -cO exp [- (a6 + b)2] (6) 

plotted in Figure 1. Following [Zhang et al., 1998] we distinguish between the sit­
uation where the postsynaptic spike, at t~, appears after or before the presynaptic 
spike, at t~, using the asymmetric kernel that captures the essence of their experi­
mental observations. 

... 
-o !.'--~-~~--'o-~-~~-----' 

/I =t'_tk 
, I 

Figure 1: The kernel function whose left part, Kp, leads to potentiation of the 
synapse, and whose right branch, KD, causes synaptic depression. 

3 Distributed Synchrony of a Hebbian Assembly 

We have run our system with synaptic delays chosen randomly to be either 1, 2, or 
3ms, and temporal parameters Tn chosen as 40ms for excitatory neurons and 20ms 
for inhibitory ones. Turning external input currents off after a while we obtained 
sustained firing activities in the range of 100-150 Hz. We have found, in addition to 
synchronous and asynchronous realizations of this attractor, a mode of distributed 
synchrony. A characteristic example of a long cycle is shown in Figure 2: The 100 
excitatory neurons split into groups such that each group fires at the same frequency 
and at a fixed phase difference from any other group. The J/JE synaptic efficacies 
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Figure 2: Distributed synchronized firing mode. The firing patterns of six cell as­
semblies of excitatory neurons are displayed vs time (in ms). These six groups of 
neurons formed in a self-organized manner for a kernel function with equal poten­
tiation and depression. The delays were chosen randomly from three values, 1 2 or 
3ms, and the system is monitored every 0.5ms . 

are initiated as small random values. The learning process leads to the self-organized 
synaptic matrix displayed in Figure 3(a). The block form of this matrix represents 
the ordered couplings that are responsible for the fact that each coherent group of 
neurons feeds the activity of groups that follow it. The self-organized groups form 
spontaneously. When the synapses are affected by some external noise, as can come 
about from Hebbian learning in which these neurons are being coupled with other 
pools of neurons, the groups will change and regroup, as seen in Figure 3(b) and 
3(c). 

(a) (b) (c) 

Figure 3: A synaptic matrix for n = 6 distributed synchrony. The synaptic matrix 
between the 100 excitatory neurons of our system is displayed in a grey-level code 
with black meaning zero efficacy and white standing for the synaptic upper-bound. 
(a) The matrix that exists during the distributed synchronous mode of Figure 2. 
Its basis is ordered such that neurons that fire together are grouped together. (b) 
Using the same basis as in (a) a new synaptic matrix is shown, one that is formed 
after stopping the sustained activity of Figure 2, introducing noise in the synaptic 
matrix, and reinstituting the original memory training. (c) The same matrix as (b) 
is shown in a new basis that exhibits connections that lead to a new and different 
realization of distributed synchrony. 

A stable distributed synchrony cycle can be simply understood for the case of a 
single synaptic delay setting the basic step, or phase difference , of the cycle. When 
several delay parameters exist, a situation that probably more accurately represents 
the a-function character of synaptic transmission in cortical networks, distributed 
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synchrony may still be obtained, as is evident from Figure 2. After some time 
the cycle may destabilize and regrouping may occur by itself, without external 
interference. The likelihood of this scenario is increased because different synaptic 
connections that have different delays can interfere with one another. Nonetheless, 
over time scales of the type shown in Figure 2, grouping is stable. 

4 Analysis of a Cycle 

In this section we analyze the dynamics of the network when it is in a stable state 
of distributed synchrony. We assume that n groups of neurons are formed and 
calculate the stationary distribution of JffE(t) . In this state the firing pattern of 
every two neurons in the network can be characterized by their frequency l/(t) and 
by their relative phase 8. We assume that 8 is a random normal variable with 
mean J.Lo and standard deviation 0'0 . Thus, Eq. 4 can be rewritten as the following 
stochastic differential equation 

dJi~E(t) = [J.LFij(t) - :s J!jE(t)] dt+O'Fij(t)dW(t) (7) 

where Fij (t) (Eq. 5) is represented here by a drift term J.LFij (t) and a diffusion 
term O'Fij (t) which are its mean and standard deviation. W(t) describes a Wiener 
process. Note that both J.LFij (t) and O'Fij (t) are calculated for a specific distribution 
of 8 and are functions of J.Lo and 0'0. 

The stochastic process that satisfies Eq. 7 will satisfy the Fokker-Plank equation 
for the probability distribution f of JIfE, 

.J' = ___ .. (t) _ _ JPlE f(JPlE t) Fij tJ' (8) 8f(JPlE t) 8 [( 1) ] 0'2 (t) 82f(JPlE t) 
8t 8JPlE J.LF.] T'J 'J' + 2 8JEE2 

1J S ij 

with reflecting boundary conditions imposed by the synaptic bounds, 0 and Jmax . 

Since we are interested in the stable state of the process we solve the stationary 
equation. The resulting density function is 

EE N [1 ( EE 1 EE2) 1 f(Jij ,J.Lt5, 0'15) = O'}ij (t) exp O'}ij (t) 2J.LFij Jij - Ts Jij (9) 

where 

(10) 

Eq. 9 enables us to calculate the stationary distribution of the synaptic efficacies 
between the presynaptic neuron i and the post-synaptic neuron j given their fre­
quency l/ and the parameters J.Lo and 0'15. An example of a solution for a 3-cycle is 
shown in Figure 4. In this case all neurons fire with frequency l/ = (3Td)-1 and J.Lt5 
takes one of the values -Td, 0, Td. 

Simulation results of a 3-cycle in a network of excitatory and inhibitory integrate­
and-fire neurons described in Section 2 are given in Figure 5. As can be seen the 
results obtained from the analysis match those observed in the simulation. 

5 Discussion 

The interesting experimental observations of synaptic learning curves 
[Markram et al., 1997, Zhang et al., 1998] have led us to study their implica­
tions for the firing patterns of a Hebbian cell assembly. We find that, in addition 
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Figure 4: Results of the analysis for n = 3, a6 = 2ms and Td = 2.5ms. (a) The 
synaptic matrix. Each of the nine blocks symbolizes a group of connections between 
neurons that have a common phase-lag J..l6 . The mean of Ji~E was calculated for 
each cell by Eq. 9 and its value is given by the gray scale tone. (b) The distribution 
of synaptic values between all excitatory neurons. 
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Figure 5: Simulation results for a network of N E = 100 and NJ = 50 integrate­
and-fire neurons, when the network is in a stable n = 3 state. Tn = 10ms for both 
excitatory and inhibitory neurons. The average frequency of the neurons is 130 Hz. 
(a) The excitatory synaptic matrix. (b) Histogram of the synaptic efficacies. 

to the expected synchronous and asynchronous modes, an interesting behavior 
of distributed synchrony can emerge. This is the phenomenon that we have 
investigated both by simulations and by analytic evaluation. 

Distributed synchrony is a mode in which the Hebbian cell assembly breaks into an 
n-cycle. This cycle is formed by instantaneous symmetry breaking, hence specific 
classification of neurons into one of the n groups depends on initial conditions, noise, 
etc. Thus the different groups of a single cycle do not have a semantic invariant 
meaning of their own. It seems perhaps premature to try and identify these cycles 
with synfire chains [Abeles , 1982] that show recurrence of firing patterns of groups 
of neurons with periods of hundreds of ms. Note however , that if we make such an 
identification , it is a different explanation from the model of [Herrmann et al., 1995J , 
which realizes the synfire chain by combining sets of preexisting patterns into a cycle. 

The simulations in Figures 2 and 3 were carried out with a learning curve that 
possessed equal potentiation and depression branches , i.e. was completely anti­
symmetric in its argument. In that case no synaptic decay was allowed. Figure 5, 
on the other hand, had stronger potentiation than depression, and a finite synaptic 
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decay time was assumed. Other conditions in these nets were different too, yet 
both had a window of parameters where distributed synchrony showed up . Using 
the analytic approach of section 4 we can derive the probability distribution of 
synaptic values once a definite cyclic pattern of distributed synchrony is formed. 
An analytic solution of the combined dynamics of both the synapses and the spiking 
neurons is still an open challenge. Hence we have to rely on the simulations to prove 
that distributed synchrony is a natural spatiotemporal behavior that follows from 
combined neuronal dynamics and synaptic learning as outlined in section 2. To the 
extent that both types of dynamics reflect correctly the dynamics of cortical neural 
networks, we may expect distributed synchrony to be a mode in which neuronal 
attractors are being realized. 

The mode of distrbuted synchrony is of special significance to the field of neural com­
putation since it forms a bridge between the feedback and feed-forward paradigms. 
Note that whereas the attractor that is formed by the Hebbian cell assembly is of 
global feedback nature, i.e. one may regard all neurons of the assembly as being 
connected to other neurons within the same assembly, the emerging structure of 
distributed synchrony shows that it breaks down into groups. These groups are 
connected to one another in a self-organized feed-forward manner, thus forming the 
cyclic behavior we have observed. 
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