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Abstract

A latent variable generative model with finite noise is used to de-
scribe several different algorithms for Independent Components Anal-
ysis (ICA). In particular, the Fixed Point ICA algorithm is shown to
be equivalent to the Expectation-Maximization algorithm for maximum
likelihood under certain constraints, allowing the conditions for global
convergence to be elucidated. The algorithms can also be explained by
their generic behavior near a singular point where the size of the opti-
mal generative bases vanishes. An expansion of the likelihood about this
singular point indicates the role of higher order correlations in determin-
ing the features discovered by ICA. The application and convergence of
these algorithms are demonstrated on a simple illustrative example.

Introduction

Independent Components Analysis (ICA) has generated much recent theoretical and prac-
tical interest because of its successes on a number of different signal processing problems.
ICA attempts to decompose the observed data into components that are as statistically in-
dependent from each other as possible, and can be viewed as a nonlinear generalization of
Principal Components Analysis (PCA). Some applications of ICA include blind separation
of audio signals, beamforming of radio sources, and discovery of features in biomedical
traces [1].

There have also been a number of approaches to deriving algorithms for ICA [2, 3, 4].
Fundamentally, they all consider the problem of recovering independent source signals {37}
from observations {Z} such that:

M
zi =Y Wijsj, i=1.N (1
=1
Here, W;; is a N x M mixing matrix where the number of sources M is not greater than
the dimensionality N of the observations. Thus, the columns of W represent the different
independent features present in the observed data.

Bell and Sejnowski formulated their Infomax algorithm for ICA as maximizing the mutual
information between the data and a nonlinearly transformed version of the data [5]. The
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covariant version of this algorithm uses the natural gradient of the mutual information to
iteratively update the estimate for the demixing matrix W' in terms of the estimated
components s = W'z [6]:

AW o [T = (g(s)sT)] W, ()

The nonlinearity g(s) differentiates the features learned by the Infomax ICA algorithm
from those found by conventional PCA. Fortunately, the exact form of the nonlinearity
used in Eq. 2 is not crucial for the success of the algorithm, as long as it preserves the
sub-Gaussian or super-Gaussian nature of the sources [7].

Another approach to ICA due to Hyvarinen and Oja was derived from maximizing objective
functions motivated by projection pursuit [8]. Their Fixed Point ICA algorithm attempts
to self-consistently solve for the extremum of a nonlinear objective function. The simplest
formulation considers a single source M = 1 so that the mixing matrix is a single vector
w, constrained to be unit length |w| = 1. Assuming the data is first preprocessed and
whitened, the Fixed Point ICA algorithm iteratively updates the estimate of w as follows:

w « (zg(wTz)) — Agw
w

Jw]’

where g(w” ) is a nonlinear function and Ag is a constant given by the integral over the
Gaussian: y ~
2
A\ = —= / dne=" /2 g'(n). 4
6=z ) g (m) (4)

The Fixed Point algorithm can be extended to an arbitrary number M < N of sources by
using Eq. 3 in a serial deflation scheme. Alternatively, the M columns of the mixing matrix
W can be updated simultaneously by orthogonalizing the N x M matrix:

W« (xg(WTz)T) — AgW. (5)

Under the assumption that the observed data match the underlying ICA model, z = W s, it
has been shown that the Fixed Point algorithm converges locally to the correct solution with
at least quadratic convergence. However, the global convergence of the generic Fixed Point
ICA algorithm is uncertain. This is in contrast to the gradient-based Infomax algorithm
whose convergence is guaranteed as long as a sufficiently small step size is chosen.

w (3)

In this paper, we first review the latent variable generative model framework for Indepen-
dent Components Analysis. We then consider the generative model in the presence of finite
noise, and show how the Fixed Point ICA algorithm can be related to an Expectation-
Maximization algorithm for maximum likelihood. This allows us to elucidate the condi-
tions under which the Fixed Point algorithm is guaranteed to globally converge. Assuming
that the data are indeed generated from independent components, we derive the optimal
parameters for convergence. We also investigate how the optimal size of the ICA mixing
matrix varies as a function of the added noise, and demonstrate the presence of a singular
point. By expanding the likelihood about this singular point, the behavior of the ICA algo-
rithms can be related to the higher order statistics present in the data. Finally, we illustrate
the application and convergence of these ICA algorithms on some artificial data.

Generative model

A convenient method for interpreting the different ICA algorithms is in terms of the hidden,
or latent, variable generative model shown in Fig. 1 [9, 10]. The hidden variables {s; }
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Figure 1: Generative model for ICA algorithms. s are the hidden variables, o are additive
Gaussian noise terms, and z = W's + o are the visible variables.

correspond to the different independent components and are assumed to have the factorized
non-Gaussian prior probability distribution:

Pla)= J]e~"). (6)

i=1

Once the hidden variables are instantiated, the visible variables {z,} are generated via a
linear mapping through the generative weights W:

N
_ 1 1 L PRy
P(I|S) —E WeXP 952 (z: ;W!.JSJ) ' @)

where o2 is the variance of the Gaussian noise added to the visible variables.

The probability of the data given this model is then calculated by integrating over all pos-
sible values of the hidden variables:

1 1 5
P(ﬁ'}) = /ds P(S)P(Ii.?) = (Q_TFEZ)T/Z /ds exp [—F(S) = w(l‘ — WS) (8)
In the limit that the added noise vanishes, o2 — 0, it has previously been shown that
maximizing the likelihood of Eq. 8 is equivalent to the Infomax algorithm in Eq. 2 [11].
In the following analysis, we will consider the situation when the variance of the noise is
nonzero, 62 # 0.

Expectation-Maximization

We assume that the data has initially been preprocessed and spherized: (z;z;) = d;;.
Unfortunately, for finite noise o2 and an arbitrary prior F(s;), deriving a learning rule for
W in closed form is analytically intractable. However, it becomes possible to derive a
simple Expectation-Maximization (EM) learning rule under the constraint:

W = €Wo, WIW, =1, )
which implies that W is orthogonal, and £ is the length of the individual columns of W.
Indeed, for data that obeys the ICA model, z = W, it can be shown that the optimal W

must satisfy this orthogonality condition. By assuming the constraint in Eq. 9 for arbitrary
data, the posterior distribution P(s|x) becomes conveniently factorized:

M
1 1
P(s|z) x H exp [_F(Sj) + ;[(WTx)jsj - 55232] . (10)
j=1



494 D.D. Lee, U. Rokni and H. Sompolinsky

For the E-step, this factorized form allows the expectation function [ ds P(s|z)s =
g(WTz) to be analytically evaluated. This expectation is then used in the M-step to find
the new estimate W':

(xg(WTx)T) — AsW' =0, (11)
where Ag is a symmetric matrix of Lagrange multipliers that constrain the new W' to be
orthogonal. Eq. 11 is easily solved by taking the reduced singular value decomposition of
the rectangular matrix:

UDVT = (zg(WTx)T), (12)
where UTU = VVT = I and D is a diagonal M x M matrix. Then the solution for the
EM estimate of the mixing matrix is given by:

w' = ¢UuvT (13)
Ag = %UDUT. (14)

As a specific example, consider the following prior for binary hidden variables: P(s) =
3[6(s — 1) + 6(s + 1)]. In this case, the expectation [ ds P(s|z)s = tanh(W7z/o?) and
so the EM update rule is given by orthogonalizing the matrix:

W « <xtanh(o_i2WTI)>. (15)

Fixed Point ICA

Besides the presence of the linear term A W in Eq. 5, the EM update rule looks very much
like that of the Fixed Point ICA algorithm. It turns out that without this linear term, the
convergence of the naive EM algorithm is much slower than that of Eq. 5. Here we show
that it is possible to interpret the role of this linear term in the Fixed Point ICA algorithm
within the framework of this generative model.

Suppose that the distribution of the observed data Pp(x) is actually a mixture between an
isotropic distribution Py(z) and a non-isotropic distribution P, (z):

Pp(z) = aPo(x) + (1 — o) P (). (16)

Because the isotropic part does not break rotational symmetry, it does not affect the choice
of the directions of the learned basis W. Thus, it is more efficient to apply the learning
algorithm to only the non-isotropic portion of the distribution, P; (z) o< Pp(z) — aFPs(z),
rather than to the whole observed distribution Pp(z). Applying EM to P, (z) results in a
correction term arising from the subtracted isotropic distribution. With this correction, the
EM update becomes:

W « (zg(WTz)) — argW 17)
which is equivalent to the Fixed Point ICA algorithm when a = 1.

Unfortunately, it is not clear how to compute an appropriate value for a to use in fitting data.
Taking a very small value, @ < 1, will result in a learning rule that is very similar to the
naive EM update rule. This implies that the algorithm will be guaranteed to monotonically
converge, albeit very slowly, to a local maximum of the likelihood. On the other hand,
choosing a large value, a > 1, will result in a subtracted probability density P, (x) that is
negative everywhere. In this case, the algorithm will converge slowly to a local minimum
of the likelihood. For the Fixed Point algorithm which operates in the intermediate regime,
a = 1, the algorithm is likely to converge most rapidly. However, it is also in this situation
that the subtracted density P (x) could have both positive and negative regions, and the
algorithm is no longer guaranteed to converge.
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Figure 2: Size of the optimal generative bases as a function of the added noise o2, showing
the singular point behavior around o2 ~ 1.

Optimal value of o

In order to determine the optimal value of o, we make the assumption that the observed
data obeys the ICA model, z = As. Note that the statistics of the sources in the data need
not match the assumed prior distribution of the sources in the generative model Eq. 6. With
this assumption, which is not related to the mixture assumption in Eq. 16, it is easy to show
that W = A is a fixed point of the algorithm. By analyzing the behavior of the algorithm
in the vicinity of this fixed point, a simple expression emerges for the change in deviations
from this fixed point, W, after a single iteration of Eq. 17:

(g'(s)) — A 3
Vij & —————0Wj; |44 1

OWij « ) —da Y + O(6W?) (18)
where the averaging here is over the true source distribution, assumed for simplicity to be

identical for all sources. Thus, the algorithm converges most rapidly if one chooses:

/
8

Oopt = %‘ (19)

so that the local convergence is cubic. From Eq. 18 one can show that the condition for the
stability of the fixed point is given by a < a., where:

(sg(s) +g'(s))
= . 2
c e (20)
Thus, for a = 0, the stability criterion in Eq. 18 is equivalent to (sg(s)) > (g'(s)). For the
cubic nonlinearity g(s) = s®, this implies that the algorithm will find the true independent
features only if the source distribution has positive kurtosis.

Singular point expansion

Let us now consider how the optimal size £ of the weights W varies as a function of the
noise parameter 2. For very small 02 < 1, the weights W are approximately described
by the Infomax algorithm of Eq. 2, and the lengths of the columns should be unity in order
to match the covariance of the data. For large 02 > 1, however, the optimal size of the
weights should be very small because the covariance of the noise is already larger than that
of the data. In fact, for Factor Analysis which is a special case of the generative model
with F(s) = 1s? in Eq. 6, it can be shown that the weights are exactly zero, W = 0, for

o2 > 1.

Thus, the size of the optimal generative weights W varies with ¢ as shown qualitatively
in Fig. 2. Above a certain critical noise value 02 =~ 1, the weights are exactly equal to
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Figure 3: Convergence of the modified EM algorithm as a function of . With g(s) =
tanh(s) as the nonlinearity, the likelihood (In cosh(W 7 z)) is plotted as a function of the
iteration number. The optimal basis W are plotted on the two-dimensional data distribution
when the likelihood is maximized (top) and minimized (bottom).

zero, W = 0. Only below this critical value do the weights become nonzero. We expand
the likelihood of the generative model in the vicinity of this singular point. This expansion
is well-behaved because the size of the generative weights W acts as a small perturbative
parameter in this expansion. The log likelihood of the model around this singular value is
then given by:

L = —41'11‘ [W’WT— (1—0’2)1]2 (21)
1
o % kurt(sm) (ziz;ze21) , Wim Wim Wim Wim
ijkim
+0(1 - 0?)3,

where kurt(s,,) represents the kurtosis of the prior distribution over the hidden variables.
Note that this expansion is valid for any symmetric prior, and differs from other expansions
that assume small deviations from a Gaussian prior [12, 13]. Eq. 21 shows the importance
of the fourth-order cumulant of the observed data in breaking the rotational degeneracy of
the weights W. The generic behavior of ICA is manifest in optimizing the cumulant term
in Eq.21, and again depends crucially on the sign of the kurtosis that is used for the prior.

Example with artificial data

As an illustration of the convergence of the algorithm in Eq. 17, we consider the simple
two-dimensional uniform distribution:

P(I;,:.Cg) = { 1/121 —\/55:31,32 S'\I/g (22)

0, otherwise

With g(s) = tanh(s) as the nonlinearity, Fig. 3 shows how the overall likelihood con-
verges for different values of the parameter a as the algorithm is iterated. For a < 1.0,
the algorithm converges to a maximum of the likelihood, with the fastest convergence at
aopt = 0.9. However, for @ > 1.2, the algorithm converges to a minimum of the like-
lihood. At an intermediate value, @ = 1.1, the likelihood does not converge at all, fluc-
tuating wildly between the maximum and minimum likelihood solutions. The maximum
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likelihood solution shows the basis vectors in W aligned with the sides of the square distri-
bution, whereas the minimum likelihood solution has the basis aligned with the diagonals.
These solutions can also be understood as maximizing and minimizing the kurtosis terms

in Eq. 21.
Discussion

The utility of the latent variable generative model is demonstrated on deriving algorithms
for ICA. By constraining the generative weights to be orthogonal, an EM algorithm is
analytically obtained. By interpreting the data to be fitted as a mixture of isotropic and
non-isotropic parts, a simple correction to the EM algorithm is derived. Under certain
conditions, this modified algorithm is equivalent to the Fixed Point ICA algorithm, and
converges much more rapidly than the naive EM algorithm. The optimal parameter for
convergence is derived assuming the data is consistent with the ICA generative model.
There also exists a critical value for the noise parameter in the generative model, about
which a controlled expansion of the likelihood is possible. This expansion makes clear
the role of higher order statistics in determining the generic behavior of different ICA
algorithms.
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