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Abstract 

A novel learning approach for human face detection using a network 
of linear units is presented. The SNoW learning architecture is a 
sparse network of linear functions over a pre-defined or incremen­
tally learned feature space and is specifically tailored for learning 
in the presence of a very large number of features. A wide range of 
face images in different poses, with different expressions and under 
different lighting conditions are used as a training set to capture 
the variations of human faces. Experimental results on commonly 
used benchmark data sets of a wide range of face images show that 
the SNoW-based approach outperforms methods that use neural 
networks, Bayesian methods, support vector machines and oth­
ers. Furthermore, learning and evaluation using the SNoW-based 
method are significantly more efficient than with other methods. 

1 Introduction 
Growing interest in intelligent human computer interactions has motivated a recent 
surge in research on problems such as face tracking, pose estimation, face expression 
and gesture recognition. Most methods, however, assume human faces in their input 
images have been detected and localized. 

Given a single image or a sequence of images, the goal of face detection is to identify 
and locate human faces regardless of their positions, scales, orientations, poses and 
illumination. To support automated solutions for the above applications, this has 
to be done efficiently and robustly. The challenge in building an efficient and robust 
system for this problem stems from the fact that human faces are highly non-rigid 
objects with a high degree of variability in size, shape, color and texture. 

Numerous intensity-based methods have been proposed recently to detect human 
faces in a single image or a sequence of images. Sung and Poggio [24J report an 
example-based learning approach for locating vertical frontal views of human faces. 
They use a number of Gaussian clusters to model the distributions of face and 
non-face patterns. A small window is moved over an image to determine whether a 
face exists using the estimated distributions. In [16], a detection algorithm is pro­
posed that combines template matching and feature-based detection method using 
hierarchical Markov random fields (MRF) and maximum a posteriori probability 
(MAP) estimation. Colmenarez and Huang [4) apply Kullback relative information 
for maximal discrimination between positive and negative examples of faces. They 
use a family of discrete Markov processes to model faces and background patterns 
and estimate the density functions. Detection of a face is based on the likelihood 
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ratio computed during training. Moghaddam and Pentland [12] propose a prob­
abilistic method that is based on density estimation in a high dimensional space 
using an eigenspace decomposition. In [20], Rowleyet al. use an ensemble of neural 
networks to learn face and non-face patterns for face detection. Schneiderman et al. 
describe a probabilistic method based on local appearance and principal component 
analysis [23]. Their method gives some preliminary results on profile face detection. 
Finally, hidden Markov models [17], higher order statistics [17], and support vector 
machines (SVM) [14] have also been applied to face detection and demonstrated 
some success in detecting upright frontal faces under certain lighting conditions. 

In this paper, we present a face detection method that uses the SNoW learning 
architecture [18, 3] to detect faces with different features and expressions, in different 
poses, and under different lighting conditions. SNoW (Sparse Network of Winnows) 
is a sparse network of linear functions that utilizes the Winnow update rule [10]. 
SNoW is specifically tailored for learning in domains in which the potential number 
of features taking part in decisions is very large, but may be unknown a priori. Some 
of the characteristics of this learning architecture are its sparsely connected units, 
the allocation of features and links in a data driven way, the decision mechanism 
and the utilization of an efficient update rule. SNoW has been used successfully on 
a variety of large scale learning tasks in the natural language domain [18, 13, 5, 19] 
and this is its first use in the visual processing domain. 

In training the SNoW-based face detector, we use a set of 1,681 face images from 
Olivetti [22], UMIST [6], Harvard [7], Yale [1] and FERET [15] databases to cap­
ture the variations in face patterns. In order to compare our approach with other 
methods, our experiments involve two benchmark data sets [20, 24] that have been 
used in other works on face detection. The experimental results on these benchmark 
data sets (which consist of 225 images with 619 faces) show that our method out­
performs all other methods evaluated on this problem, including those using neural 
networks [20], Kullback relative information [4], naive Bayes [23] and support vector 
machines [14], while being significantly more efficient computationally. Along with 
these experimental results we describe further experiments that provide insight into 
some of the theoretical and practical considerations of SNoW-based learning sys­
tems. In particular, we study the effect of learning with primitive as well as with 
multi-scale features, and discuss some of the sources of the success of the approach. 

2 The SN oW System 
The SNoW (Sparse Network of Winnows) learning architecture is a sparse network 
of linear units over a common pre-defined or incrementally learned feature space. 
Nodes in the input layer of the network represent simple relations over the input 
and are being used as the input features. Each linear unit is called a target node and 
represents relations which are of interest over the input examples; in the current 
application, only two target nodes are being used, one as a representation for a face 
pattern and the other for a non-face pattern. Given a set of relations (Le., types of 
features) that may be of interest in the input image, each input image is mapped into 
a set of features which are active (present) in it; this representation is presented 
to the input layer of SNoW and propagates to the target nodes. (Features may 
take either binary value, just indicating the fact that the feature is active (present) 
or real values, reflecting its strength; in the current application, all features are 
binary. See Sec 3.1.) Target nodes are linked via weighted edges to (some of the) 
input features. Let At = {i1 , ... , im } be the set of features that are active in an 
example and are linked to the target node t. Then the linear unit is active if and 
only if 2:iEAt wf > Ot, where wf is the weight on the edge connecting the ith feature 
to the target node t, and Ot is its threshold. 

In the current application a single SNoW unit which includes two subnetworks, one 
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for each of the targets, is used. A given example is treated autonomously by each 
target subnetwork; that is, an image labeled as a face is used as a positive example 
for the face target and as a negative example for the non-face target, and vice-versa. 

The learning policy is on-line and mistake-driven; several update rules can be used 
within SNoW. The most successful update rule, and the only one used in this 
work is a variant of Littlestone's Winnow update rule, a mUltiplicative update rule 
tailored to the situation in which the set of input features is not known a priori, as 
in the infinite attribute model [2]. This mechanism is implemented via the sparse 
architecture of SNoW. That is, (1) input features are allocated in a data driven 
way - an input node for the feature i is allocated only if the feature i is active 
in the input image and (2) a link (Le., a non-zero weight) exists between a target 
node t and a feature i if and only if i has been active in an image labeled t. Thus, 
the architecture also supports augmenting the feature types at later stages or from 
external sources in a flexible way, an option we do not use in the current work. 

The Winnow update rule has, in addition to the threshold fh at the target t, two 
update parameters: a promotion parameter a > 1 and a demotion parameter 0 < 
f3 < 1. These are being used to update the current representation of the target t (the 
set of weights w;) only when a mistake in prediction is made. Let At = {il' ... , im } 

be the set of active features that are linked to the target node t. If the algorithm 
predicts 0 (that is, LiEAt w~ ::; fh) and the received label is 1, the active weights in 
the current example are promoted in a mUltiplicative fashion: 'Vi E At, wf +- a . w~. 
If the algorithm predicts 1 (LiEAt wf > Ot) and the received label is 0, the active 
weights in the current example are demoted: 'Vi E At, w~ +- f3. wf. All other weights 
are unchanged. The key property of the Winnow update rule is that the number 
of examplesl it requires to learn a linear function grows linearly with the number 
of relevant features and only logarithmically with the total number of features. 
This property seems crucial in domains in which the number of potential features 
is vast, but a relatively small number of them is relevant (this does not mean that 
only a small number of them will be active, or have non-zero weights). Winnow 
is known to learn efficiently any linear threshold function and to be robust in the 
presence of various kinds of noise and in cases where no linear-threshold function can 
make perfect classification, and still maintain its abovementioned dependence on the 
number of total and relevant attributes [11, 9]. Once target subnetworks have been 
learned and the network is being evaluated, a winner-take-all mechanism selects 
the dominant active target node in the SNoW unit to produce a final prediction. 
In general, but not in this work, units' output may be cached and processed along 
with the output of other SNoW units to produce a coherent output. 
3 Learning to detect faces 
For training, we use a set of 1,681 face images (collected from Olivetti [22], UMIST 
[6], Harvard [7], Yale [1] and FE RET [15] databases) which have wide variations 
in pose, facial expression and lighting condition. For negative examples we start 
with 8,422 non-face examples from 400 images of landscapes, trees, buildings, etc. 
Although it is extremely difficult to collect a representative set of non-face examples, 
the bootstrap method [24] is used to include more non-face examples during training. 
For positive examples, each face sample is manually cropped and normalized such 
that it is aligned vertically and its size is 20 x 20 pixels. To make the detection 
method less sensitive to scale and rotation variation, 10 face examples are generated 
from each original sample. The images are produced by randomly rotating the 
images by up to 15 degrees with scaling between 80% and 120%. This produces 
16,810 face samples. Then, histogram equalization is performed that maps the 

lIn the on-line setting [10] this is usually phrased in terms of a mistake-bound but is 
known to imply convergence in the PAC sense [25, 8]. 
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intensity values to expand the range of intensities. The same procedure is applied 
to input images in detection phase. 

3.1 Primitive Features 
The SNoW-based face detector makes use of Boolean features that encode the po­
sitions and intensity values of pixels. Let the pixel at (x, y) of an image with width 
wand height h have intensity value I(x, y) (O :::; I{x, y) :::; 255). This information 
is encoded as a feature whose index is 256{y * w + x) + I{x, y). This representation 
ensures that different points in the {position x intensity} space are mapped to 
different features. (That is, the feature indexed 256{y * w + x) + I{x, y) is active if 
and only if the intensity in position (x, y) is I{x, y).) In our experiments, the values 
for wand hare 20 since each face sample has been normalized to an image of 20 x 20 
pixels. Note that although the number of potential features in our representation 
is 102400 (400 x 256), only 400 of those are active (present) in each example, and it 
is plausible that many features will never be active. Since the algorithm's complex­
ity depends on the number of active features in an example, rather than the total 
number of features, the sparseness also ensures efficiency. 

3.2 Multi-scale Features 
Many vision problems have utilized multi-scale features to capture the structures 
of an object. However, extracting detailed multi-scale features using edge or region 
information from segmentation is a computationally expensive task. Here we use the 
SNo W paradigm to extract Boolean features that represent multi-scale information. 
This is done in a similar way to the {position x intensity} used in Sec. 3.1, 
only that in this case we encode, in addition to position, the mean and variance of a 
multi-scale pixel. The hope is that the multi-scale feature will capture information 
that otherwise requires many pixel-based features to represent, and thus simplify 
the learning problem. Uninformative multi-scale features will be quickly assigned 
low weights by the learning algorithm and will not degrade performance. Since 
each face sample is normalized to be a rectangular image of the same size, it suffices 
to consider rectangular sub-images with varying size from face samples, and for 
each generate features in terms of the means and variances of their intensity values. 
Empirical results show that faces can be described effectively this way. 

Instead of using the absolute values of the mean and variance when encoding the 
features, we discretize these values into a predefined number of classes. Since the 
distribution of the mean values as well as the variance values is normal, the dis­
cretization is finer near the means of these distributions. The total number of 
values was determined empirically to be 100, out of which 80 ended up near the 
mean. Given that, we use the same scheme as in Sec. 3.1 to map the {position x 
intensi ty mean x intensity variance} space into the Boolean feature space. 
This is done separately for four different sub-image scales, of 1 x 1, 2 x 2, 4 x 4 to 
10 x 10 pixels. The multi-scale feature vector consists of active features correspond­
ing to all these scales. The number of active features in each example is therefore 
400 + 100 + 25 + 4, although the total number of features is much larger. 

In recent work we have used more sophisticated conjunctive features for this purpose 
yielding even better results. However, the emphasis here is that with the SNoW 
approach, even very simplistic features support excellent performance. 

4 Empirical Results 
We tested the SNoW-based approach with both sets of features on the two sets 
of images collected by Rowley [20], and Sung [24]. Each image is scanned with a 
rectangular window to determine whether a face exists in the window or not. To 
detect faces of different scales, each input image is repeatedly subsampled by a 
factor of 1.2 and scanned through for 10 iterations. Table 1 shows the reported 
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experimental results of the SNoW-based face detectors and several face detection 
systems using the two benchmark data sets (available at http://www.cs.cmu.edu/ 
-har/ faces.html). The first data set consists of 130 images with 507 frontal faces 
and the second data set consists of 23 images with 155 frontal faces. There are 
a few hand drawn faces and cartoon faces in both sets. Since some methods use 
intensity values as their features, systems 1-4 and 7 discard these such hand drawn 
and cartoon faces. Therefore, there are 125 images with 483 faces in test set 1 and 
20 images with 136 faces in test set 2 respectively. The reported detection rate is 
computed as the ratio between the number of faces detected in the images by the 
system and the number of faces identified there by humans. The number of false 
detections is the number of non-faces detected as faces. 

It is difficult to evaluate the performance of different methods even though they 
use the same benchmark data sets because different criteria (e.g. training time, 
number of training examples involved, execution time, number of scanned windows 
in detection) can be applied to favor one over another. Also, one can tune the 
parameters of one's method to increase the detection rates while increasing also the 
false detections. The methods using neural networks [20], distribution-based [24], 
Kullback relative information [4] and naive Bayes [23] report several experimental 
results based on different sets of parameters. Table 1 summarizes the best detection 
rates and corresponding false detections of these methods. Although the method 
in [4] has the highest detection rates in one benchmark test, this was done by 
significantly increasing the number of false detections. Other than that, it is evident 
that the SNoW-based face detectors outperforms others in terms of the overall 
performance. These results show the credibility of SNoW for these tasks, as well 

Table 1: Experimental results on images from test set 1 (125 images with 483 faces) 
in [20] and test set 2 (20 images with 136 faces) in [24] (see text for details) 

II Test Set 1 Test Set 2 
Method /I Detect Rate False Detects Detect Rate 1 False Detects 

SNoW w/ priDlitive features 94.2'70 84 93.6'70 3 
SNoW wi Dlulti-scale features 94.8% 78 94.1% 3 
Mixture of factor analyzers [261 92.3'70 82 89.4'70 3 
Fisher linear discriminant [271 93.6'7. 74 91.5'7. 1 
Distribution-based. [24 J N~ N/A 81.9% 13 
Neural network [20J 92.5J"o 862 90.3% 42 
Naive Bayes [23J 93.0% 88 91.2% 12 
Kullback relative information [41 98.0'7. 12758 NjA NjA 
Support vector machine [14J N/A N/A 74.2'7. 20 

as exhibit the improvement achieved by increasing the expressiveness of the features. 
This may indicate that further elaboration of the features, which can be done in a 
very general and flexible way within SNoW, would yield further improvements. 

In addition to comparing feature sets, we started to investigate some of the reasons 
for the success of SNoW in this domain, which we discuss briefly below. Two 
potential contributions are the Winnow update rule and the architecture. First, we 
studied the update rule in isolation, independent of the SNoW architecture. The 
results we got when using the Winnow simply as a discriminator were fairly poor 
(63.9%/65.3% for Test Set 1, primitive and multi-scale features, respectively, and 
similar results for the Test Set 2.). The results are not surprising, given that Winnow 
is used here only as a discriminator and is using only positive weights. Investigating 
the architecture in isolation reveals that weighting or discarding features based on 
their contribution to mistakes during training, as is done within SNoW, is crucial. 
Considering the active features uniformly (separately for faces and non-faces) yields 
poor results. Specifically, studying the resulting SNoW network shows that the total 
number of features that were active with non-faces is 102,208, out of 102,400 possible 
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(primitive) features. The total number of active features in faces was only 82,608, 
most of which are active only a few times. In retrospect, this is clear given the 
diverse set of images used as negative examples, relative to the somewhat restricted 
(by nature) set of images that constitute faces. (Similar phenomenon occurs with 
the multi-scale features, where the numbers are 121572 and 90528, respectively, out 
of 135424.) Overall it exhibits that the architecture, the learning regime and the 
update rule all contribute significantly to the success of the approach. 

Figure 1 shows some faces detected in our experiments. Note that profile faces and 
faces under heavy illumination are detected. Experimental results show that profile 
faces and faces under different illumination are detected very well by our method. 
Note that although there may exist several detected faces around each face, only 
one window is drawn to enclose each detected face for clear presentation . 

. f?,~' "ru 
. i ... 

- ' 

Figure 1: Sample experimental results using our method on images from two bench­
mark data sets. Every detected face is shown with an enclosing window. 

5 Discussion and Conclusion 
Many theoretical and experimental issues are to be addressed before a learning sys­
tem of this sort can be used to detect faces efficiently and robustly under general 
conditions. In terms of the face detection problem, the presented method is still 
not able to detect rotated faces. A recent method [21], addresses this problem by 
building upon a upright face detector [20] and rotating each test sample to upright 
position. However, it suffers from degraded detection rates and more false detec­
tions. Given our results, we believe that the SNoW approach, if adapted in similar 
ways, would generalize very well to detect faces under more general conditions. 

In terms of the SNoW architecture, although the main ingredients of it are under­
stood theoretically, more work is required to better understand its strengths. This 
is increasingly interesting given that the architecture has been found to perform 
very well in large-scale problem in the natural language domain as well 
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The contributions of this paper can be summarized as follows. We have introduced 
the SNoW learning architecture to the domain of visual processing and described an 
approach that detect faces regardless of their poses, facial features and illumination 
conditions. Experimental results show that this method outperforms other methods 
in terms of detection rates and false detectionss, while being more efficient both in 
learning and evaluation. 
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