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We consider the problem of reliably choosing a near-best strategy from 
a restricted class of strategies TI in a partially observable Markov deci­
sion process (POMDP). We assume we are given the ability to simulate 
the POMDP, and study what might be called the sample complexity -
that is, the amount of data one must generate in the POMDP in order 
to choose a good strategy. We prove upper bounds on the sample com­
plexity showing that, even for infinitely large and arbitrarily complex 
POMDPs, the amount of data needed can be finite, and depends only 
linearly on the complexity of the restricted strategy class TI, and expo­
nentially on the horizon time. This latter dependence can be eased in a 
variety of ways, including the application of gradient and local search 
algorithms. Our measure of complexity generalizes the classical super­
vised learning notion of VC dimension to the settings of reinforcement 
learning and planning. 

1 Introduction 

Much recent attention has been focused on partially observable Markov decision processes 
(POMDPs) which have exponentially or even infinitely large state spaces. For such do­
mains, a number of interesting basic issues arise. As the state space becomes large, the 
classical way of specifying a POMDP by tables of transition probabilities clearly becomes 
infeasible. To intelligently discuss the problem of planning - that is, computing a good 
strategy 1 in a given POMDP - compact or implicit representations of both POMDPs, and 
of strategies in POMDPs, must be developed. Examples include factored next-state dis­
tributions [2, 3, 7], and strategies derived from function approximation schemes [8]. The 
trend towards such compact representations, as well as algorithms for planning and learn­
ing using them, is reminiscent of supervised learning, where researchers have long empha­
sized parametric models (such as decision trees and neural networks) that can capture only 
limited structure, but which enjoy a number of computational and information-theoretic 
benefits. 

Motivated by these issues, we consider a setting were we are given a generative model, or 

lThroughout, we use the word strategy to mean any mapping from observable histories to actions, 
which generalizes the notion of policy in a fully observable MDP. 
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simulator, for a POMDP, and wish to find a good strategy 7r from some restricted class of 
strategies II . A generative model is a "black box" that allows us to generate experience (tra­
jectories) from different states of our choosing. Generative models are an abstract notion of 
compact POMDP representations, in the sense that the compact representations typically 
considered (such as factored next-state distributions) already provide efficient generative 
models. Here we are imagining that the strategy class II is given by some compact repre­
sentation or by some natural limitation on strategies (such as bounded memory). Thus, the 
view we are adopting is that even though the world (POMDP) may be extremely complex, 
we assume that we can at least simulate or sample experience in the world (via the gener­
ative model), and we try to use this experience to choose a strategy from some "simple" 
class II. 

We study the following question: How many calls to a generative model are needed to have 
enough data to choose a near-best strategy in the given class? This is analogous to the 
question of sample complexity in supervised learning - but harder. The added difficulty 
lies in the reuse of data. In supervised learning, every sample (x, f(x)) provides feedback 
about every hypothesis function h(x) (namely, how close h(x) is to f(x)) . If h is restricted 
to lie in some hypothesis class 1i, this reuse permits sample complexity bounds that are far 
smaller than the size of 1i. For instance, only O(log(I1il)) samples are needed to choose 
a near-best model from a finite class 1i. If 1i is infinite, then sample sizes are obtained 
that depend only on some measure of the complexity of1i (such as VC dimension [9]), but 
which have no dependence on the complexity of the target function or the size of the input 
domain. 

In the POMDP setting, we would like analogous sample complexity bounds in terms of 
the "complexity" of the strategy class II - bounds that have no dependence on the size or 
complexity of the POMDP. But unlike the supervised learning setting, experience "reuse" 
is not immediate in POMDPs. To see this, consider the "straw man" algorithm that, starting 
with some 7r E II, uses the generative model to generate many trajectories under 7r, and 
thus forms a Monte Carlo estimate of V 7r (so). It is not clear that these trajectories under 
7r are of much use in evaluating a different 7r' E II, since 7r and 7r' may quickly disagree 
on which actions to take. The naive Monte Carlo method thus gives 0(1111) bounds on the 
"sample complexity," rather than O(log(IIII)), for the finite case. 

In this paper, we shall describe the trajectory tree method of generating "reusable" tra­
jectories, which requires generating only a (relatively) small number of trajectories - a 
number that is independent of the state-space size of the POMDP, depends only linearly 
on a general measure of the complexity of the strategy class II, and depends exponentially 
on the horizon time. This latter dependence can be eased via gradient algorithms such as 
Williams' REINFORCE [10] and Baird and Moore's more recent YAPS [1], and by local 
search techniques. Our measure of strategy class complexity generalizes the notion of VC 
dimension in supervised learning to the settings of reinforcement learning and planning, 
and we give bounds that recover for these settings the most powerful analogous results in 
supervised learning - bounds for arbitrary, infinite strategy classes that depend only on 
the dimension of the class rather than the size of the state space. 

2 Preliminaries 

We begin with some standard definitions. A Markov decision process (MDP) is a tuple 
(S, So, A, {P (,1 s, a)}, R), where: S is a (possibly infinite) state set; So E S is a start 
state; A = {al' . .. ,ad are actions; PC Is, a) gives the next-state distribution upon taking 
action a from state s; and the reward function R(s, a) gives the corresponding rewards. 
We assume for simplicity that rewards are deterministic, and further that they are bounded 
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in absolute value by Rmax. A partially observable Markov decision process (POMDP) 
consists of an underlying MOP and observation distributions Q(ols) for each state s, 
where 0 is the random observation made at s. 

We have adopted the common assumption of a fixed start state,2 because once we limit 
the class of strategies we entertain, there may not be a single "best" strategy in the class­
different start states may have different best strategies in II. We also assume that we are 
given a POMOP M in the form of a generative model for M that, when given as input any 
state-action pair (s, a), will output a state S' drawn according to P(·ls, a), an observation 
o drawn according to Q(·ls), and the reward R(s, a). This gives us the ability to sample 
the POMOP M in a random-access way. This definition may initially seem unreasonably 
generous: the generative model is giving us a fully observable simulation of a partially 
observable process. However, the key point is that we must still find a strategy that performs 
well in the partially observable setting. As a concrete example, in designing an elevator 
control system, we may have access to a simulator that generates random rider arrival times, 
and keeps track of the waiting time of each rider, the number of riders waiting at every floor 
at every time of day, and so on. However helpful this information might be in designing 
the controller, this controller must only use information about which floors currently have 
had their call button pushed (the observables). In any case, readers uncomfortable with 
the power provided by our generative models are referred to Section 5, where we briefly 
describe results requiring only an extremely weak form of partially observable simulation. 

At any time t, the agent will have seen some sequence of observations, 00,··., Ot, 

and will have chosen actions and received rewards for each of the t time 
steps prior to the current one. We write its observable history as h 
(( 00, ao, TO), ... , (Ot-l , at-I, Tt-l ), (Ot, _, _)). Such observable histories, also called tra­
jectories, are the inputs to strategies. More formally, a strategy 7r is any (stochastic) map­
ping from observable histories to actions. (For example, this includes approaches which 
use the observable history to track the belief state [5].) A strategy class II is any set of 
strategies. 

We will restrict our attention to the case of discounted return,3 and we let, E [0,1) be the 
discount factor. We define the t::-horizon time to be HE = 10gl'(t::(1 - ,)/2Rmax ). Note 
that returns beyond the first HE-steps can contribute at most t::/2 to the total discounted 
return. Also, let Vmax = Rmax/(l - ,) bound the value function. Finally, for a POMDP 
M and a strategy class II, we define opt(M, II) = SUP7rEII V7r (so) to be the best expected 
return achievable from So using II. 

Our problem is thus the following: Given a generative model for a POMOP M and a 
strategy class II, how many calls to the generative model must we make, in order to have 
enough data to choose a 7r E II whose performance V7r(so) approaches opt(M, II)? Also, 
which calls should we make to the generative model to achieve this? 

3 The Trajectory Tree Method 

We now describe how we can use a generative model to create "reusable" trajectories. 
For ease of exposition, we assume there are only two actions al and a2, but our results 
generalize easily to any finite number of actions. (See the full paper [6].) 

2 An equivalent definition is to assume a fixed distribution D over start states, since So can be a 
"dummy" state whose next-state distribution under any action is D. 

3The results in this paper can be extended without difficulty to the undiscounted finite-horizon 
setting [6]. 
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A trajectory tree is a binary tree in which each node is labeled by a state and observation 
pair, and has a child for each of the two actions. Additionally, each link to a child is 
labeled by a reward, and the tree's depth will be H~, so it will have about 2H e nodes. 
(In Section 4, we will discuss settings where this exponential dependence on H~ can be 
eased.) Each trajectory tree is built as follows: The root is labeled by So and the observation 
there, 00 ' Its two children are then created by calling the generative model on (so, ad and 
(so, a2), which gives us the two next-states reached (say s~ and s~ respectively), the two 
observations made (say o~ and o~), and the two rewards received (r~ = R(so, ad and 
r~ = R(so, a2). Then (s~ , aD and (s~, o~) label the root's aI-child and a2-child, and the 
links to these children are labeled r~ and r~. Recursively, we generate two children and 
rewards this way for each node down to depth H~ . 

Now for any deterministic strategy tr and any trajectory tree T, tr defines a path through 
T: tr starts at the root, and inductively, if tr is at some internal node in T, then we feed 
to tr the observable history along the path from the root to that node, and tr selects and 
moves to a child of the current node. This continues until a leaf node is reached, and we 
define R( tr , T) to be the discounted sum of returns along the path taken. In the case that 
tr is stochastic, tr defines a distribution on paths in T, and R(tr , T) is the expected return 
according to this distribution. (We will later also describe another method for treating 
stochastic strategies.) Hence, given m trajectory trees T1 , ... , T m, a natural estimate for 
V7r(so) is V7r(so) = ,; 2:::1 R(tr, Ti). Note that each tree can be used to evaluate any 
strategy, much the way a single labeled example (x , f(x)) can be used to evaluate any 
hypothesis h(x) in supervised learning. Thus in this sense, trajectory trees are reusable. 

Our goal now is to establish uniform convergence results that bound the error of the es­
timates V7r (so) as a function of the "sample size" (number of trees) m. Section 3.1 first 
treats the easier case of deterministic classes II; Section 3.2 extends the result to stochastic 
classes. 

3.1 The Case of Deterministic II 

Let us begin by stating a result for the special case of finite classes of deterministic strate­
gies, which will serve to demonstrate the kind of bound we seek. 

Theorem 3.1 Let II be any finite class of deterministic strategies for an arbitrary two­
action POMDP M. Let m trajectory trees be created using a generative modelfor M, and 
V7r(so) be the resulting estimates. lfm = 0 ((Vrnax /t)2(log(IIII) + log(1/8))), then with 

probability 1 - 8, I V7r (so) - V7r (so) I :s t holds simultaneously for alltr E II. 

Due to space limitations, detailed proofs of the results of this section are left to the full 
paper [6] , but we will try to convey the intuition behind the ideas. Observe that for any 
fixed deterministic tr, the estimates R( tr, Ti) that are generated by the m different trajectory 
trees Ti are independent. Moreover, each R(tr, Ti ) is an unbiased estimate of the expected 
discounted H~-step return of tr , which is in turn t/2-close to V7r(so). These observations, 
combined with a simple Chernoff and union bound argument, are sufficient to establish 
Theorem 3.1. Rather than developing this argument here, we instead move straight on to 
the harder case of infinite II. 

When addressing sample complexity in supervised learning, perhaps the most important 
insight is that even though a class 1i may be infinite, the number of possible behaviors of 
1i on a finite set of points is often not exhaustive. More precisely, for boolean functions, 
we say that the set Xl, ... , Xd is shattered by 1i if every of the 2d possible labelings of 
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these points is realized by some h E 1i. The VC dimension of 1i is then defined as the 
size of the largest shattered set [9]. It is known that if the VC dimension of 1i is d, then the 
number <P d (m) of possible labelings induced by 1i on a set of m points is at most (em J d)d, 
which is much less than 2m for d « m. This fact provides the key leverage exploited by 
the classical VC dimension results, and we will concentrate on replicating this leverage in 
our setting. 

If II is a (possibly infinite) set of deterministic strategies, then each strategy tr E II is simply 
a deterministic function mapping from the set of observable histories to the set {al' a2}, 
and is thus a boolean function on observable histories. We can therefore write VC(II) to 
denote the familiar VC dimension of the set of binary functions II. For example, if II is 
the set of all thresholded linear functions of the current vector of observations (a particular 
type of memoryless strategy), then VC(II) simply equals the number of parameters. We 
now show intuitively why a class II of bounded VC dimension d cannot induce exhaustive 
behavior on a set Tl , ... ,T m of trajectory trees for m » d. Note that if trl, tr2 E II are such 
that their "reward labelings" (R(trl' T l ), ... ,R(trl' T m)) and (R( tr2, Tt), ... , R( tr2, T m)) 
differ, then R( trl, Ti) =f. R(tr2' Ti ) for some 1 ::; i ::; m. But if trl and tr2 give different 
returns on Ti , then they must choose different actions at some node in T i . In other words, 
every different reward labeling of the set of m trees yields a different (binary) labeling of 
the set of m . 2H • observable histories in the trees. So, the number of different tree reward 
labelings can be at most <Pd(m· 2H<) ::; (em· 2H<Jd)d. By developing this argument 
carefully and applying classical uniform convergence techniques, we obtain the following 
theorem. (Full proof in [6].) 

Theorem 3.2 Let II be any class of deterministic strategies for an arbitrary two-action 
POMDP M, and let VC(II) denote its VC dimension. Let m trajectory trees be created 
using a generative model for M, and "\I7r (so) be the resulting estimates. If 

(1) 

then with probability 1 - 6, I V 7r (so) - "\I7r (so) I ::; € holds simultaneously for alltr E II. 

3.2 The Case of Stochastic II 

We now address the case of stochastic strategy classes. We describe an approach where 
we transform stochastic strategies into "equivalent" deterministic ones and operate on the 
deterministic versions, reducing the problem to the one handled in the previous section. The 
transformation is as follows: Given a class of stochastic strategies II, each with domain X 
(where X is the set of all observable histories), we first extend the domain to be X x [0,1]. 
Now for each stochastic strategy tr E II, define a corresponding deterministic transformed 
strategy tr' with domain X x [0,1], given by: tr'(h, r) = al if r ::; Pr[tr(h) = ad, 
and 7r'(h,r) = a2 otherwise (for any hEX, r E [0,1]). Let II' be the collection of 
these transformed deterministic strategies tr'. Since II' is just a set of deterministic boolean 
functions, its VC dimension is well-defined. We then define the pseudo-dimension of the 
original set of stochastic strategies II to be p VC(II) = VC(II').4 

Having transformed the strategy class, we also need to transform the POMDP, by augment­
ing the state space S to be S x [0,1]. Informally, the transitions and rewards remain the 
same, except that after each state transition, we draw a new random variable r uniformly in 
[0,1], and independently of all previous events. States are now of the form (s, r), and we let 
r be an observed variable. Whenever in the original POMDP a stochastic strategy tr would 

4This is equivalent to the conventional definition of the pseudo-dimension of IT [4], when it is 
viewed as a set of maps into real-valued action-probabilities. 
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have been given a history h, in the transformed POMDP the corresponding deterministic 
transformed strategy 7r' is given (h, r), where r is the [0, l]-random variable at the current 
state. By the definition of 7r', it is easy to see that 7r' and 7r have exactly the same chance 
of choosing each action at any node (randomization over r). 

We are now back in the deterministic case, so Theorem 3.2 applies, with VC(II) replaced 
by pVC (II) = VC(II'), and we again have the desired uniform convergence result. 

4 Algorithms for Approximate Planning 

Given a generative model for a POMDP, the preceding section's results immediately sug­
gest a class of approximate planning algorithms: generate m trajectory trees T1 , ... , T m, 

and search for a 7r E II that maximizes V7r (so) = (1/ m) L R( 7r, Ti). The following 
corollary to the uniform convergence results establishes the soundness of this approach. 

Corollary 4.1 Let II be a class of strategies in a POMDP M, and let the number m of 
trajectory trees be as given in Theorem 3.2. Let it = argmax7r Err{V7r(so)} be the policy 
in II with the highest empirical return on the m trees. Then with probability 1 - 0, it is 
near-optimal within II: 

V7T(SO) ~ opt(M, II) - 2€. (2) 

If the suggested maximization is computationally infeasible, one can search for a local 
maximum 7r instead, and uniform convergence again assures us that V7r (so) is a trusted es­
timate of our true performance. Of course, even finding a local maximum can be expensive, 
since each trajectory tree is of size exponential in H{. 

However, in practice it may be possible to significantly reduce the cost of the search. Sup­
pose we are using a class of (possibly transformed) deterministic strategies, and we perform 
a greedy local search over II to optimize V7r (so). Then at any time in the search, to evalu­
ate the policy we are currently considering, we really need to look at only a single path of 
length Hf in each tree, corresponding to the path taken by the strategy being considered. 
Thus, we should build the trajectory trees lazily - that is, incrementally build each node 
of each tree only as it is needed to evaluate R( 7r, Ti) for the current strategy 7r. If there are 
parts of a tree that are reached only by poor policies, then a good search algorithm may 
never even build these parts of the tree. In any case, for a fixed number of trees, each step 
of the local search now takes time only linear in H f •5 

There is a different approach that works directly on stochastic strategies (that is, without re­
quiring the transformation to deterministic strategies). In this case each stochastic strategy 
7r defines a distribution over all the paths in a trajectory tree, and thus calculating R( 7r, T) 
may in general require examining complete trees. However, we can view each trajectory 
tree as a small, deterministic POMDP by itself, with the children of each node in the tree 
being its successor nodes. So if II = {7re : e E IRd} is a smoothly parameterized family 
of stochastic strategies, then algorithms such as William's REINFORCE [10] can be used 
to find an unbiased estimate of the gradient (d/ de) V7r 9 (so), which in turn can be used to 

5 See also (Ng and Jordan, in preparation) which, by assuming a much stronger model of a POMDP 
(a deterministic function 1 such that I(s, a, r) is distributed according to P('ls, a) when r is dis­
tributed Uniform[O,l]), gives an algorithm that enjoys uniform convergence bounds similar to those 
presented here, but with only a polynomial rather than exponential dependence on H,. The algorithm 
samples a number of vectors r(i) E [0, IjH., each of which, with I, defines an H,-step Monte Carlo 
evaluation trial for any policy 7r . The bound is on the number of such random vectors needed (rather 
than on the total number of calls to f). 
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perform stochastic gradient ascent to maximize V7r8 (so). Moreover, for a fixed number of 
trees, these algorithms need only O(H€) time per gradient estimate; so combined with lazy 
tree construction, we again have a practical algorithm whose per-step complexity is only 
linear in the horizon time. This line of thought is further developed in the long version of 
the paper.6 

5 The Random Trajectory Method 

Using a fully observable generative model of a POMDP, we have shown that the trajectory 
tree method gives uniformly good value estimates, with an amount of experience linear in 
VC(II), and exponential in H€. It turns out we can significantly weaken the generative 
model, yet still obtain essentially the same theoretical results. In this harder case, we as­
sume a generative model that provides only partially observable histories generated by a 
truly random strategy (which takes each action with equal probability at every step, regard­
less of the history so far). Furthermore, these trajectories always begin at the designated 
start state, so there is no ability provided to "reset" the POMDP to any state other than so. 
(Indeed, underlying states may never be observed.) 

Our method for this harder case is called the Random Trajectory method. It seems to lead 
less readily to practical algorithms than the trajectory tree method, and its formal descrip­
tion and analysis, which is more difficult than for trajectory trees, are given in the long 
version of this paper [6]. As in Theorem 3.2, we prove that the amount of data needed is 
linear in VC(II), and exponential in the horizon time - that is, by averaging appropriately 
over the resulting ensemble of trajectories generated, this amount of data is sufficient to 
yield uniformly good estimates of the values for all strategies in II. 
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