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Abstract 

We describe a new incremental algorithm for training linear thresh­
old functions: the Relaxed Online Maximum Margin Algorithm, or 
ROMMA. ROMMA can be viewed as an approximation to the algorithm 
that repeatedly chooses the hyperplane that classifies previously seen ex­
amples correctly with the maximum margin. It is known that such a 
maximum-margin hypothesis can be computed by minimizing the length 
of the weight vector subject to a number of linear constraints. ROMMA 
works by maintaining a relatively simple relaxation of these constraints 
that can be efficiently updated. We prove a mistake bound for ROMMA 
that is the same as that proved for the perceptron algorithm. Our analysis 
implies that the more computationally intensive maximum-margin algo­
rithm also satisfies this mistake bound; this is the first worst-case perfor­
mance guarantee for this algorithm. We describe some experiments us­
ing ROMMA and a variant that updates its hypothesis more aggressively 
as batch algorithms to recognize handwritten digits. The computational 
complexity and simplicity of these algorithms is similar to that of per­
ceptron algorithm, but their generalization is much better. We describe a 
sense in which the performance of ROMMA converges to that of SVM 
in the limit if bias isn't considered. 

1 Introduction 

The perceptron algorithm [10, 11] is well-known for its simplicity and effectiveness in the 
case of linearly separable data. Vapnik's support vector machines (SVM) [13] use quadratic 
programming to find the weight vector that classifies all the training data correctly and 
maximizes the margin, i.e. the minimal distance between the separating hyperplane and the 
instances. This algorithm is slower than the perceptron algorithm, but generalizes better. 
On the other hand, as an incremental algorithm, the perceptron algorithm is better suited 
for online learning, where the algorithm repeatedly must classify patterns one at a time, 
then finds out the correct classification, and then updates its hypothesis before making the 
next prediction. 

In this paper, we design and analyze a new simple online algorithm called ROMMA (the 
Relaxed Online Maximum Margin Algorithm) for classification using a linear threshold 
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function. ROMMA has similar time complexity to the perceptron algorithm, but its gener­
alization performance in our experiments is much better on average. Moreover, ROMMA 
can be applied with kernel functions. 

We conducted experiments similar to those performed by Cortes and Vapnik [2] and Freund 
and Schapire [3] on the problem of handwritten digit recognition. We tested the standard 
perceptron algorithm, the voted perceptron algorithm (for details, see [3]) and our new 
algorithm, using the polynomial kernel function with d = 4 (the choice that was best 
in [3]). We found that our new algorithm performed better than the standard perceptron 
algorithm, had slightly better performance than the voted perceptron. 

For some other research with aims similar to ours, we refer the reader to [9,4,5,6]. 

The paper is organized as foIlows. In Section 2, we describe ROMMA in enough detail 
to determine its predictions, and prove a mistake bound for it. In Section 3, we describe 
ROMMA in more detail. In Section 4, we compare the experimental results of ROMMA 
and an aggressive variant of ROMMA with the perceptron and the voted perceptron algo­
rithms. 

2 A mistake-bound analysis 

2.1 The online algorithms 

For concreteness, our analysis will concern the case in which instances (also called pat­
terns) and weight vectors are in R n . Fix n EN. In the standard online learning model [7], 
learning proceeds in trials. In the tth trial, the algorithm is first presented with an instance 
it ERn. Next, the algorithm outputs a prediction Yt of the classification of it. Finally, 
the algorithm finds out the correct classification Yt E {-1 , 1}. If Yt =I=- Yt, then we say that 
the algorithm makes a mistake. It is worth emphasizing that in this model, when making 
its prediction for the tth trial, the algorithm only has access to instance-classification pairs 
for previous trials. 

All of the online algorithms that we will consider work by maintaining a weight vector WI 
which is updated between trials, and predicting Yt = sign( Wt . it), where sign( z) is 1 if z 
is positive, -1 if z is negative, and 0 otherwise.! 

The perceptron algorithm. The perceptron algorithm, due to Rosenblatt [10, 11], starts 
off with Wi = O. When its prediction differs from the label Yt, it updates its weight vector 
by Wt+i = Wt + Ytit. If the prediction is correct then the weight vector is not changed. 

The next three algorithms that we will consider assume that all of the data seen by the 
online algorithm is collectively linearly separable, i.e. that there is a weight vector u such 
that for all each trial t, Yt = sign( u . xd. When kernel functions are used, this is often the 
case in practice. 

The ideal online maximum margin algorithm. On each trial t, this algorithm chooses a 
weight vector Wt for which for all previous trials s ::; t, sign( Wt . is) = Ys, and which 
maximizes the minimum distance of any is to the separating hyperplane. It is known [1, 14] 
that this can be implemented by choosing Wt to minimize Ilwdl subject to the constraints 
that Ys (Wt . xs) ;::: 1 for all s ::; t. These constraints define a convex polyhedron in weight 
space which we will refer to as Pt. 

The relaxed online maximum margin algorithm. This is our new algorithm. The first 
difference is that trials in which mistakes are not made are ignored. The second difference 

'The prediction of 0, which ensures a mistake, is to make the proofs simpler. The usual mistake 
bound proof for the perceptron algorithm goes through with this change. 
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is in how the algorithm responds to mistakes. The relaxed algorithm starts off like the ideal 
algorithm. Before the second trial, it sets W2 to be the shortest weight vector such that 
Yl (W2 . i l ) 2:: 1. If there is a mistake on the second trial, it chooses W3 as would the ideal 
algorithm, to be the smallest element of 

(1) 

However, if the third trial is a mistake, then it behaves differently. Instead of choosing W4 
to be the smallest element of 

{w: yI(w· i l ) 2:: I} n {w: Y2(W. i 2 ) 2:: I} n {w: Y3(W· i3) 2:: I} , 

it lets W4 be the smallest element of 

{w: W3 . W 2:: JJw3112} n {w: Y3(W. i3) 2:: I}. 
This can be thought of as, before the third trial, replacing the polyhedron defined by (1) 
with the halfspace {w : W3 · W 2:: JJW3JJ2} (see Figure 1). 

Figure 1: In ROMMA, a convex 
polyhedron in weight space is re­
placed with the halfspace with the 
same smallest element. 

Note that this halfspace contains the polyhedron 
of (1); in fact, it contains any convex set whose 
smallest element is W3. Thus, it can be thought of 
as the least restrictive convex constraint for which 
the smallest satisfying weight vector is W3. Let 
us call this halfspace H3 . The algorithm contin­
ues in this manner. If the tth trial is a mistake, 
then Wt+l is chosen to be the smallest element of 
Ht n {w : Yt(w· it) 2:: I}, and Ht+l is set to be 
{w : Wt+l . W 2:: IIwt+lJJ2}. If the tth trial is not a 
mistake, then Wt+l = Wt and Ht+l = Ht. We will 
call Ht the old constraint, and {w : Yt (w . it) 2: I} 
the new constraint. 

Note that after each mistake, this algorithm needs only to solve a quadratic programming 
problem with two linear constraints. In fact, there is a simple closed-form expression for 
Wt+l as a function of Wt, it and Yt that enables it to be computed incrementally using time 
similar to that of the perceptron algorithm. This is described in Section 3. 

The relaxed online maximum margin algorithm with aggressive updating. The algo­
rithm is the same as the previous algorithm, except that an update is made after any trial in 
which yt{Wt . it} < 1, not just after mistakes. 

2.2 Upper bound on the number of mistakes made 

Now we prove a bound on the number of mistakes made by ROMMA. As in previous 
mistake bound proofs (e.g. [8]), we will show that mistakes result in an increase in a 
"measure of progress", and then appeal to a bound on the total possible progress. Our 
proof will use the squared length of Wt as its measure of progress. 

First we will need the following lemmas. 

Lemma 1 On any run of ROMMA on linearly separable data, if trial t was a mistake, then 
the new constraint is binding at the new weight vector; i.e. Yt (Wt+l . it) = 1. 

Proof: For the purpose of contradiction suppose the new constraint is not binding at the 
new weight vector Wt+l. Since Wt fails to satisfy this constraint, the line connecting Wt+l 
and Wt intersects with the border hyperplane of the new constraint, and we denote the 
intersecting point wq. Then Wq can be represented as Wq = aWt + (l-a)Wt+l, 0 < a < 1. 
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Since the square of Euclidean length II . 1\2 is a convex function, the following holds: 

IIwql\2 ~ allwtll 2 + (1 - a) IIwt+d2 

Since Wt is the unique smallest member of Ht and Wt+1 i= Wt, we have IIwtl12 < IIwt+11l2, 
which implies 

(2) 

Since Wt and Wt+1 are both in Ht, Wq is too, and hence (2) contradicts the definition of 
Wt+1· 0 
Lemma 2 On any run of ROMMA on linearly separable data, if trial t was a mistake, and 
not the first one, then the old constraint is binding at the new weight vector, i.e. Wt + 1 . Wt = 
IIwtV 

Proof: Let At be the plane of weight vectors that make the new constraint tight, i.e. At = 
{tV : Yt(w· xd = I}. By Lemma 1, Wt+1 E At . Let at = Ytxtlllxtll2 be the element 
of At that is perpendicular to it. Then each wE At satisfies IIwII2 = lIatll2 + IIw - at 11 2, 
and therefore the length of a vector W in At is minimized when W = at and is monotone 
in the distance from W to at. Thus, if the old constraint is not binding, then Wt+1 = at. 
since otherwise the solution could be improved by moving Wt+1 a little bit toward at. But 
the old constraint requires that (Wt . Wt+d 2: IIwtll2, and if Wt+1 = at = Ytxtlllxtll2, this 
means that Wt . (YtxtlllxtIl2) 2: Ilwtll2. Rearranging, we get Yt(Wt . xd 2: IIxtll211wtlI2 > 0 
(IIXtll > 0 follows from the fact that the data is linearly separable, and IIwt!\ > 0 follows 
from the fact that there was at least one previous mistake). But since trial t was a mistake, 
Yt (Wt . Xt) ~ 0, a contradiction. 0 
Now we're ready to prove the mistake bound. 

Theorem 3 Choose mEN, and a sequence (Xl, Yd,···, (xm , Ym) of pattern­
classijicationpairsinRn x {-1,+1}. LetR = maxtl\xtli. Ifthereisaweightvector 
ii such that Yt (ii . Xt) 2: 1 for all 1 ~ t ~ m, then the number of mistakes made by 
ROMMA on (Xl, yd, .. . , (xm, Ym) is at most R211ii1l 2. 

Proof: First, we claim that for all t, ii E Ht. This is easily seen since ii satisfies all the 
constraints that are ever imposed on a weight vector, and therefore all relaxations of such 
constraints. Since Wt is the smallest element of Ht. we have IIwtll ~ lliill. 
We have W2 = Ylxdllid 2, and therefore IIw211 = 1/lIx1\\ 2:: 1/ R which implies IIw2112 2: 
1/ R2. We claim that if any trial t > 1 is a mistake, then IIWt+1112 2: IIwtlI 2 + 1/ R2. This 
will imply by induction that after M mistakes, the squared length of the algorithm's weight 
vector is at least M / R2, which, since all of the algorithm's weight vectors are no longer 
than ii, will complete the proof. 

B 

Figure 2: At, B t , and Pt 

Choose an index t > 1 of a trial in which a mistake 
is made. Let At = {tV : Yt (w . it) = I} and B t = 
{w : (w . Wt) = IIwtIl2}. By Lemmas 1 and 2, 
Wt+1 EAt n B t . 

The distance from Wt to At (call· it pe) satisfies 

IYt(xt . we) -11 1 1 
Pt = II xtll 2: lIitll 2: R ' (3) 

since the fact that there was a mistake in trial t im­
plies Yt(Xt . Wt) ~ O. Also, since Wt+1 E At. 

(4) 
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Because Wt is the normal vector of Bt and Wt+1 E Bt , we have 

IIWt+1112 = IIWtll2 + II Wt+1 - Wt1l 2. 

Thus, applying (3) and (4), we have IIWt+d2 - IIWt 112 = IIWt+! - welI2 2: p; 2: 1/ R2, 
which, as discussed above, completes the proof. 0 
Using the fact, easily proved using induction, that for all t, Pt ~ Ht , we can easily prove 
the following, which complements analyses of the maximum margin algorithm using inde­
pendence assumptions [1, 14, 12]. Details are omitted due to space constraints. 

Theorem 4 Choose mEN, and a sequence (x\, yd,"', (im , Ym) of pattern­
classification pairs in R n x {-I , +1}. Let R = maXt lIitli. If there is a weight vector 
ii such that Yt (ii . it) 2: 1 for all 1 ::; t ::; m, then the number of mistakes made by the 
ideal online maximum margin algorithm on (Xl, yd, .. " (xm, Ym) is at most R211ii1l 2. 

In the proof of Theorem 3, if an update is made and Yt (Wt . id < 1 - 0 instead of Yt (Wt . 
it) ::; 0, then the progress made can be seen to be at least 02/ R2. This can be applied to 
prove the following. 

Theorem 5 Choose 0 > 0, mEN, and a sequence (Xl, Y1) , ... , (X m, Ym) of pattern­
classification pairs in R n x {-I, + I}. Let R = maXt lIiell. If there is a weight vector ii 
such that Yt (ii . Xt) 2: 1 for aliI::; t ::; m, then if (i1' yI), ... , (im, Ym) are presented on 
line the number of trials in which aggressive ROMMA has Yt (Wt . it) < 1 - 0 is at most 
R2I1iiIl 2/02. 

Theorem 5 implies that, in a sense, repeatedly cycling through a dataset using aggressive 
ROMMA will eventually converge to SVM; note however that bias is not considered. 

3 An efficient implementation 

When the prediction of ROMMA differs from the expected label, the algorithm chooses 

Wt+! to minimize IIWt+!1I subject to AWt+! = b, where A = (~f) and b = 

( 11~:"2 ) . Simple calculation shows that 

Wt+! AT (AAT)-lb 

( IIxtII211Wtll2 - Yt(Wt . it)) ~ ("wtIl2(Yt - (Wt · it)) ) ~ 
lIitll211Wtll2 - (Wt . ie)2 Wt + IIxtll211Wtll2 _ (Wt . XtP Xt· (5) 

If on trials t in which a mistake is made, Ct = 

Since the computations required by ROMMA involve inner products together with a few 
operations on scalars, we can apply the kernel method to our algorithm, efficiently solving 
the original problem in a very high dimensional space. Computationally, we only need to 
modify the algorithm by replacing each inner product computation (ii . Xj) with a kernel 
function computation IC (ii, Xj). 

To make a prediction for the tth trial, the algorithm must compute the inner product between 
Xt and prediction vector Wt. In order to apply the kernel function, as in [1, 3], we store each 
prediction vector Wt in an implicit manner, as the weighted sum of examples on which 
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mistakes occur during the training. In particular. each Wt is represented as 

(t-l) t-l (t_ l ) 
Wt = IT Cj WI + L n Cn djxj 

J=1 J=1 n=J+l 

The above formula may seem daunting; however, making use of the recurrence (Wt+l ·x) = 
Ct (Wt . x) + dt (Xt . x). it is obvious that the complexity of our new algorithm is similar to 
that of perceptron algorithm. This was born out by our experiments. 

The implementation for aggressive ROMMA is similar to the above. 

4 Experiments 

We did some experiments using the ROMMA and aggressive ROMMA as batch algorithms 
on the MNIST OCR database. 2 We obtained a batch algorithm from our online algorithm 
in. the usual way, making a number of passes over the dataset and using the final weight 
vector to classify the test data. 

Every example in this database has two parts, the first is a 28 x 28 matrix which rep­
resents the image of the corresponding digit. Each entry in the matrix takes value from 
{O, . . . , 255}. The second part is a label taking a value from {O,· .. , g} . The dataset 
consists of 60, 000 training examples and 10,000 test examples. We adopt the following 
polynomial kernel: K(Xi, Xj) = (1 + (Xi· Xj))d. This corresponds to using an expanded 
collection of features including all products of at most d components of the original fea­
ture vector (see [14]). Let us refer to the mapping from the original feature vector to the 
expanded feature vector as <1>. Note that one component of <I> (x) is always 1, and therefore 
the component of the weight vector corresponding to that component can be viewed as a 
bias. In our experiments, we set WI = <1>(6') rather than (5 to speed up the learning of the 
coefficient corresponding to the bias. We chose d = 4 since in experiments on the same 
problem conducted in [3 , 2], the best results occur with this value. 

To cope with multiclass data, we trained ROMMA and aggressive ROMMA once for each 
of the 10 labels. Classification of an unknown pattern is done according to the maximum 
output of these ten classifiers. 

As every entry in the image matrix takes value from {O , · .. , 255}, the order of magnitude 
of K(x, x) is at least 1026 , which might cause round-off error in the computation of Ci and 
di . We scale the data by dividing each entry with 1100 when training with ROMMA. 

Table 1: Experimental results on MNIST data 

T=l T=2 T=3 T =4 
Err MisNo Err MisNo Err MisNo Err MisNo 

percep 2.84 7970 2.27 10539 1.99 11945 1.85 12800 
voted-percep 2.26 7970 1.88 10539 1.76 11945 1.69 12800 
ROMMA 2.48 7963 1.96 9995 1.79 10971 1.77 11547 
agg-ROMMA 2.14 6077 1.82 7391 1.71 7901 1.67 8139 
agg-ROMMACNC) 2.05 5909 1.76 6979 1.67 7339 1.63 7484 

Since the performance of online learning is affected by the order of sample sequence, all 
the results shown in Table 1 average over 10 random permutations. The columns marked 

2National Institute for Standards and Technology, special database 3. See 
http://www.research.att.com/ ... yanniocr for information on obtaining this dataset. 
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"MisNo" in Table 1 show the total number of mistakes made during the training for the 10 
labels. Although online learning would involve only one epoch, we present results for a 
batch setting until four epochs (T in Table 1 represents the number of epochs). 

To deal with data which are linearly inseparable in the feature space, and also to improve 
generalization, Friess et al [4] suggested the use of quadratic penalty in the cost function, 
which can be implemented using a slightly different kernel function [4, 5]: iC(Xk ' Xj) = 
K(Xk, Xj) + c5kj ).., where c5kj is the Kronecker delta function. The last row in Table 1 is the 
result of aggressive ROMMA using this method to control noise ().. = 30 for 10 classifiers). 

We conducted three groups of experiments, one for the perceptron algorithm (denoted "per­
cep"), the second for the voted perceptron (denoted "voted-percep") whose description is 
in [3], the third for ROMMA, aggressive ROMMA (denoted "agg-ROMMA"), and aggres­
sive ROMMA with noise control (denoted "agg-ROMMA(NC)"). Data in the third group 
are scaled. All three groups set 'lih = <1>(0). 

The results in Table 1 demonstrate that ROMMA has better performance than the standard 
perceptron, aggressive ROMMA has slightly better performance than the voted perceptron. 
Aggressive ROMMA with noise control should not be compared with perceptrons without 
noise control. Its presentation is used to show what performance our new online algorithm 
could achieve (of course it's not the best, since all 10 classifiers use the same )"). A remark­
able phenomenon is that our new algorithm behaves very well at the first two epochs. 
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