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Abstract 

This paper examines the application of reinforcement learning to a wire­
less communication problem. The problem requires that channel util­
ity be maximized while simultaneously minimizing battery usage. We 
present a solution to this multi-criteria problem that is able to signifi­
cantly reduce power consumption. The solution uses a variable discount 
factor to capture the effects of battery usage. 

1 Introduction 

Reinforcement learning (RL) has been applied to resource allocation problems in telecom­
munications, e.g., channel allocation in wireless systems, network routing, and admission 
control in telecommunication networks [1,2, 8, 10]. These have demonstrated reinforce­
ment learning can find good policies that significantly increase the application reward 
within the dynamics of the telecommunication problems. However, a key issue is how 
to treat the commonly occurring multiple reward and constraint criteria in a consistent way. 

This paper will focus on power management for wireless packet communication channels. 
These channels are unlike wireline channels in that channel quality is poor and varies over 
time, and often one side of the wireless link is a battery operated device such as a laptop 
computer. In this environment, power management decides when to transmit and receive 
so as to simultaneously maximize channel utility and battery life. 

A number of power management strategies have been developed for different aspects of 
battery operated computer systems such as the hard disk and CPU [4, 5]. Managing the 
channel is different in that some control actions such as shutting off the wireless transmitter 
make the state of the channel and the other side of the communication unobservable. 

In this paper, we consider the problem of finding a power management policy that simul­
taneously maximizes the radio communication's earned revenue while minimizing battery 
usage. The problem is recast as a stochastic shortest path problem which in turn is mapped 
to a discounted infinite horizon with a variable discount factor. Results show significant 
reductions in power usage. 
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Figure 1: The five components of the radio communication system. 

2 Problem Description 

The problem is comprised of five components as shown in Figure 1: mobile application, 
mobile radio, wireless channel, base station radio. and base station application. The ap­
plications on each end generate packets that are sent via a radio across the channel to the 
radio and then application on the other side. The application also defines the utility of a 
given end-to-end performance. The radios implement a simple acknowledgment/retransmit 
protocol for reliable transmission. The base station is fixed and has a reliable power supply 
and therefore is not power constrained. The mobile power is limited by a battery and it 
can choose to turn its radio off for periods of time to reduce power usage. Note that even 
with the radio off, the mobile system continues to draw power for other uses. The channel 
adds errors to the packets. The rate of errors depends on many factors such as location 
of mobile and base station, intervening distance. and levels of interference. The problem 
requires models for each of these components. To be concrete. the specific models used in 
this paper are described in the following sections. It should be emphasized that in order to 
focus on the machine learning issues, simple models have been chosen. More sophisticated 
models can readily be included. 

2.1 The Channel 

The channel carries fixed-size packets in synchronous time slots. All packet rates are nor­
malized by the channel rate so that the channel carries one packet per unit time in each 
direction. The forward and reverse channels are orthogonal and do not interfere. 

Wireless data channels typically have low error rates. Occasionally. due to interference or 
signal fading, the channel introduces many errors. This variation is possible even when the 
mobile and base station are stationary. The channel is modeled by a two state Gilbert-Elliot 
model [3]. In this model, the channel is in either a "good" or a "bad" state with a packet 
error probabilities Pg and Pb where Pg < Pb· The channel is symmetric with the same loss 
rate in both directions. The channel stays in each state with a geometrically distributed 
holding time with mean holding times hg and hb time slots. 

2.2 Mobile and Base Station Application 

The traffic generated by the source is a bursty ON/OFF model that alternates between gen­
erating no packets and generating packets at rate TON. The holding times are geometrically 
distributed with mean holding times hON and hOFF. The traffic in each direction is inde­
pendent and identically distributed. 

2.3 The Radios 

The radios can transmit data from the application and send it on the channel and simul­
taneously receive data from the other radio and pass it on to its application. The radios 
implement a simple packet protocol to ensure reliability. Packets from the sources are 
queued in the radio and sent one by one. Packets consist of a header and data. The header 
carries acknowledgements (ACK's) with the most recent packet received without error. The 
header contains a checksum so that errors in the payload can be detected. Errored packets 
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Parameter Name Symbol Value 
Channel Error Rate, Good pg 0.01 
Channel Error Rate, Bad Pb 0.20 

Channel Holding Time, Good hg 100 
Channel Holding Time, Bad hb 10 

Source On Rate TON 1.0 
Source Holding Time, On hON 1 
Source Holding Time, Off hOFF 10 

Power, Radio Off POFF 7W 
Power, Radio On PON 8.5W 

Power, Radio Transmitting PTX lOW 
Real Time Max Delay dmax 3 

Web Browsing Time Scale do 3 

Table 1: Application parameters. 

cause the receiving radio to send a packet with a negative acknowledgment (NACK) to the 
other radio instructing it to retransmit the packet sequence starting from the errored packet. 
The NACK is sent immediately even if no data is waiting and the radio must send an empty 
packet. Only unerrored packets are sent on to the application. The header is assumed to 
always be received without errorl. 

Since the mobile is constrained by power, the mobile is considered the master and the base 
station the slave. The base station is always on and ready to transmit or receive. The mobile 
can turn its radio off to conserve power. Every ON-OFF and OFF-ON transition generates 
a packet with a message in the header indicating the change of state to the base station. 
These message packets carry no data. The mobile expends power at three levels-PoFF, 
PoN , and Ptx--corresponding to the radio off, receiver on but no packet transmitted, and 
receiver on packet transmitted. 

2.4 Reward Criteria 

Reward is earned for packets passed in each direction. The amount depends on the ap­
plication. In this paper we consider three types of applications, an e-mail application, a 
real-time application, and a web browsing application. In the e-mail application, a unit 
reward is given for every packet received by the application. In the real time application a 
unit reward is given for every packet received by the application with delay less than dmax · 

The reward is zero otherwise. In the web browsing application, time is important but not 
critical. The value of a packet with delay d is (1 - l/do)d, where do is the desired time 
scale of the arrivals. 

The specific parameters used in this experiment are given in Table 1. These were gathered 
as typical values from [7, 9]. It should be emphasized that this model is the simplest 
model that captures the essential characteristics of the problem. More realistic channels, 
protocols, applications, and rewards can readily be incorporated but for this paper are left 
out for clarity. 

1 A packet error rate of 20% implies a bit error rate of less than 1 %. Error correcting codes in the 
header can easily reduce this error rate to a low value. The main intent is to simplify the protocol for 
this paper so that time-outs and other mechanisms do not need to be considered. 
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Component States 
Channel {good,ba~} 

Application {ON,OFF} 
Mobile { ON,OFF} 
Mobile {List of waiting and unacknowledged packets and their current delay} 

Base Station {List of waiting and unacknowledged packets and their current delay} 

Table 2: Components to System State. 

3 Markov Decision Processes 

At any given time slot, t, the system is in a particular configuration, x, defined by the state 
of each of the components in Table 2. The system state is s = (x, t) where we include 
the time in order to facilitate accounting for the battery. The mobile can choose to toggle 
its radio between the ON and OFF state and rewards are generated by successfully received 
packets. The task of the learner is to determine a radio ON/OFF policy that maximizes the 
total reward for packets received before batteries run out. 

The battery life is not a fixed time. First, it depends on usage. Second, for a given drain, 
the capacity depends on how long the battery was charged, how long it has sat since being 
charged, the age of the battery, etc. In short, the battery runs out at a random time. The 
system can be modeled as a stochastic shortest path problem whereby there exists a terminal 
state, So, that corresponds to the battery empty in which no more reward is possible and the 
system remains permanently at no cost. 

3.1 Multi-criteria Objective 

Formally, the goal is to learn a policy for each possible system state so as to maximize 

J'(8)=E{t.C(t) 8,,,}, 
where E{ 'Is, 'Jr} is the expectation over possible trajectories starting from state s using 
policy 'Jr, c(t) is the reward for packets received at time t, and T is the last time step before 
the batteries run out. 

Typically, T is very large and this inhibits fast learning. So, in order to promote faster 
learning we convert this problem to a discounted problem that removes the variance caused 
by the random stopping times. At time t, given action a(t), while in state s(t) the terminal 
state is reached with probability Ps(t) (a(t)). Setting the value of the terminal state to 0, we 
can convert our new criterion to maximize: 

r (8) = E { t. c(t) g (1 - p>(T)(a(T))) S,,,}, 

where the product is the probability of reaching time t . In words, future rewards are dis­
counted by 1 - Ps (a), and the discounting is larger for actions that drain the batteries 
faster. Thus a more power efficient strategy will have a discount factor closer to one which 
correctly extends the effective horizon over which reward is captured. 

3.2 Q-Iearning 

RL methods solve MDP problems by learning good approximations to the optimal value 
function, J*, given by the solution to the Bellman optimality equation which takes the 
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following form: 

J*(s) max [Esf{c(s,a,s') + (l-ps(a))J*(s')}] 
aEA(s) 

897 

(1) 

where A(s) is the set of actions available in the current state s, c(s, a, s') is the effective 
immediate payoff, and Esf {.} is the expectation over possible next states s'. 

We learn an appr<;>ximation to J* using Watkin's Q-learning algorithm. Bellman's equation 
can be rewritten in Q-factor as 

J*(s) max Q*(s,a) 
aEA(s) 

(2) 

In every time step the following decision is made. The Q-value of turning on in the next 
state is compared to the Q-value of turning off in the next state. If turning on has higher 
value the mobile turns on. Else, the mobile turns off. 

Whatever our decision, we update our value function as follows: on a transition from state 
s to s' on action a, 

Q(s, a) (1 - 1')Q(s, a) + l' (C(S, a, s') + (1- ps(a)) max Q(s', b)) (3) 
bEA(Sf) 

where l' is the learning rate. In order for Q-Iearning to perform well, all potentially impor­
tant state-action pairs (s, a) must be explored. At each state, with probability 0.1 we apply 
a random action instead of the action recommended by the Q-value. However, we still use 
(3) to update Q-values using the action b recommended by the Q-values. 

3.3 Structural Limits to the State Space 

For theoretical reasons it is desirable to use a table lookup representation. In practice, 
since the mobile radio decides using information available to it, this is impossible for the 
following reasons. The state of the channel is never known directly. The receiver only 
observes errored packets. It is possible to infer the state, but, only when packets are actually 
received and channel state changes introduce inference errors. 

Traditional packet applications rarely communicate state information to the transport layer. 
This state information could also be inferred. But, given the quickly changing application 
dynamics, the application state is often ignored. For the particular parameters in Table 1, 
(i .e. rON = 1.0) the application is on if and only if it generates a packet so its state is 
completely specified by the packet arrivals and does not need to be inferred. 

The most serious deficiency to a complete state space representation is that when the mobile 
radio turns OFF, it has no knowledge of state changes in the base station. Even when it is 
ON, the protocol does not have provisions for transferring directly the state information. 
Again, this implies that state information must be inferred. 

One approach to these structural limits is to use a POMDP approach [6] which we leave to 
future work. In this paper, we simply learn deterministic policies on features that estimate 
the state. 

3.4 Simplifying Assumptions 

Beyond the structural problems of the previous section we must treat the usual problem that 
the state space is huge. For instance, assuming even moderate maximum queue sizes and 
maximum wait times yields 1020 states. If one considers e-mail like applications where 
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Component Feature 
Mobile Radio is radio ON or OFF 
Mobile Radio number of packets waiting at the mobile 
Mobile Radio wait time of first packet waiting at the mobile 

Channel number of errors received in last 4 time slots 
Base Radio number of time slots since mobile was last ON 

Table 3: Decision Features Measured by Mobile Radio 

wait times of minutes (1000's of time slot wait times) with many packets waiting possible, 
the state space exceeds 10100 states. Thus we seek a representation to reduce the size and 
complexity of the state space. This reduction is taken in two parts. The first is a feature 
representation that is possible given the structural limits of the previous section, the second 
is a function approximation based on these feature vectors. 

The feature vectors are listed in Table 3. These are chosen since they are measurable at 
the mobile radio. For function approximation, we use state aggregation since it provably 
converges. 

4 Simulation Results 

This section describes simulation-based experiments on the mobile radio control problem. 
For this initial study, we simplified the problem by setting Pg = Pb = 0 (i.e. no channel 
errors). 

State aggregation was used with 4800 aggregate states. The battery termination probability, 
ps(a) was simply PIlOOO where P is the power appropriate for the state and action chosen 
from Table 1. This was chosen to have an expected battery life much longer than the time 
scale of the traffic and channel processes. 

Three policies were learned, one for each application reward criteria. The resulting policies 
are tested by simulating for 106 time slots. 

In each test run, an upper and lower bound on the energy usage is computed. The upper 
bound is the case of the mobile radio always on2 . The lower bound is a policy that ignores 
the reward criteria but still delivers all the packets. In this policy, the radio is off and packets 
are accumulated until the latter portion of the test run when they are sent in one large group. 
Policies are compared using the normalized power savings. This is a measure of how close 
the policy is to the lower bound with 0% and 100% being the upper and lower bound. 

The results are given in Table 4. The table also lists the average reward per packet received 
by the application. For the e-mail application, which has no constraints on the packets, the 
average reward is identically one. 

5 Conclusion 

This paper showed that reinforcement learning was able to learn a policy that significantly 
reduced the power consumption of a mobile radio while maintaining a high application 
utility. It used a novel variable discount factor that captured the impact of different actions 
on battery life. This was able to gain 50% to 80% of the possible power savings. 

2There exist policies that exceed this power, e.g. if they toggle oNand oFFoften and generate many 
notification packets. But, the always on policy is the baseline that we are trying to improve upon. 
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Application 
Normalized Average 

Power Savings Reward 
E-mail 81% 1 

Real Time 49% 1.00 
Web Browsing 48% 0.46 

Table 4: Simulation Results. 

In the application the paper used a simple model of the radio, channel, battery, etc. It also 
used simple state aggregation and ignored the partially observable aspects of the problem. 
Future work will address more accurate models, function approximation, and POMDP ap­
proaches. 
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