
Spiking Boltzmann Machines 

Geoffrey E. Hinton 
Gatsby Computational Neuroscience Unit 

University College London 
London WCIN 3AR, UK 
hinton@gatsby. ucl. ac. uk 

Abstract 

Andrew D. Brown 
Department of Computer Science 

University of Toronto 
Toronto, Canada 

andy@cs.utoronto.ca 

We first show how to represent sharp posterior probability distribu­
tions using real valued coefficients on broadly-tuned basis functions. 
Then we show how the precise times of spikes can be used to con­
vey the real-valued coefficients on the basis functions quickly and 
accurately. Finally we describe a simple simulation in which spik­
ing neurons learn to model an image sequence by fitting a dynamic 
generative model. 

1 Population codes and energy landscapes 

A perceived object is represented in the brain by the activities of many neurons, but 
there is no general consensus on how the activities of individual neurons combine to 
represent the multiple properties of an object. We start by focussing on the case of 
a single object that has multiple instantiation parameters such as position, velocity, 
size and orientation. We assume that each neuron has an ideal stimulus in the space 
of instantiation parameters and that its activation rate or probability of activation 
falls off monotonically in all directions as the actual stimulus departs from this ideal. 
The semantic problem is to define exactly what instantiation parameters are being 
represented when the activities of many such neurons are specified. 

Hinton, Rumelhart and McClelland (1986) consider binary neurons with receptive 
fields that are convex in instantiation space. They assume that when an object 
is present it activates all of the neurons in whose receptive fields its instantiation 
parameters lie. Consequently, if it is known that only one object is present, the 
parameter values of the object must lie within the feasible region formed by the 
intersection of the receptive fields of the active neurons. This will be called a con­
junctive distributed representation. Assuming that each receptive field occupies 
only a small fraction of the whole space, an interesting property of this type of 
"coarse coding" is that the bigger the receptive fields, the more accurate the repre­
sentation. However, large receptive fields lead to a loss of resolution when several 
objects are present simultaneously. 

When the sensory input is noisy, it is impossible to infer the exact parameters of 
objects so it makes sense for a perceptual system to represent the probability dis­
tribution across parameters rather than just a single best estimate or a feasible 
region. The full probability distribution is essential for correctly combining infor-



Spiking Boltzmann Machines 

E(x) 

P(X) 

123 

Figure 1: a) Energy landscape over a one­
dimensional space. Each neuron adds a 
dimple (dotted line) to the energy land­
scape (solid line). b) The corresponding 
probability density. Where dimples over­
lap the corresponding probability density 
becomes sharper. Since the dimples decay 
to zero, the location of a sharp probabili­
ty peak is not affected by distant dimples 
and multimodal distributions can be rep­
resented. 

mation from different times or different Sources. One obvious way to represent this 
distribution (Anderson and van Essen, 1994) is to allow each neuron to represent 
a fairly compact probability distribution over the space of instantiation parameters 
and to treat the activity levels of neurons as (unnormalized) mixing proportions. 
The semantics of this disjunctive distributed representation is precise, but the per­
cepts it allows are not because it is impossible to represent distributions that are 
sharper than the individual receptive fields and, in high-dimensional spaces, the 
individual fields must be broad in order to cover the space. Disjunctive represen­
tations are used in Kohonen's self-organizing map which is why it is restricted to 
very low dimensional latent spaces. 

The disjunctive model can be viewed as an attempt to approximate arbitrary smooth 
probability distributions by adding together probability distributions contributed 
by each active neuron. Coarse coding suggests a multiplicative approach in which 
the addition is done in the domain of energies (negative log probabilities). Each 
active neuron contributes an energy landscape over the whole space of instantiation 
parameters. The activity level of the neuron multiplies its energy landscape and the 
landscapes for all neurons in the population are added (Figure 1). If, for example, 
each neuron has a full covariance Gaussian tuning function, its energy landscape 
is a parabolic bowl whose curvature matrix is the inverse of the covariance matrix. 
The activity level of the neuron scales the inverse covariance matrix. If there are 
k instantiation parameters then only k + k(k + 1)/2 real numbers are required to 
span the space of means and inverse covariance matrices. So the real-valued activ­
ities of O(k2) neurons are sufficient to represent arbitrary full covariance Gaussian 
distributions over the space of instantiation parameters. 

Treating neural activities as multiplicative coefficients on additive contributions to 
energy landscapes has a number of advantages. Unlike disjunctive codes, vague 
distributions are represented by low activities so significant biochemical energy is 
only required when distributions are quite sharp. A central operation in Bayesian 
inference is to combine a prior term with a likelihood term or to combine two 
conditionally independent likelihood terms. This is trivially achieved by adding 
two energy landscapes l . 

lWe thank Zoubin Ghahramani for pointing out that another important operation, 
convolving a probability distribution with Gaussian noise, is a difficult non-linear operation 
on the energy landscape. 



124 G. E. Hinton and A. D. Brown 

2 Representing the coefficients on the basis functions 

To perform perception at video rates, the probability distributions over instantiation 
parameters need to be represented at about 30 frames per second. This seems 
difficult using relatively slow spiking neurons because it requires the real-valued 
multiplicative coefficients on the basis functions to be communicated accurately and 
quickly using all-or-none spikes. The trick is to realise that when a spike arrives 
at another neuron it produces a postsynaptic potential that is a smooth function 
of time. So from the perspective of the postsynaptic neuron, the spike has been 
convolved with a smooth temporal function. By adding a number of these smooth 
functions together, with appropriate temporal offsets, it is possible to represent any 
smoothly varying sequence of coefficient values on a basis function, and this makes 
it possible to represent the temporal evolution of probability distributions as shown 
in Figure 2. The ability to vary the location of a spike in the single dimension of 
time thus allows real-valued control of the representation of probability distributions 
over multiple spatial dimensions. 

a) 

.~ 
> " 

~ 
'iii OOiS 
Q) 

II: 

Encoded Value 

b) 
neuron 2 

time 

I 
, , 

Time 

Figure 2: a)Two spiking neurons centered at 0 and 1 can represent the time-varying 
mean and standard deviation on a single spatial dimension. The spikes are first 
convolved with a temporal kernel and the resulting activity values are treated as 
exponents on Gaussian distributions centered at 0 and 1. The ratio of the activi­
ty values determines the mean and the sum of the activity values determines the 
inverse variance. b) The same method can be used for two (or more) spatial di­
mensions. Time flows from top to bottom. Each spike makes a contribution to the 
energy landscape that resembles an hourglass (thin lines). The waist of the hour­
glass corresponds to the time at which the spike has its strongest effect on some 
post-synaptic population. By moving the hourglasses in time, it is possible to get 
whatever temporal cross-sections are desired (thick lines) provided the temporal 
sampling rate is comparable to the time course of the effect of a spike. 

Our proposed use of spike timing to convey real values quickly and accurately does 
not require precise coincidence detection, sub-threshold oscillations, modifiable time 
delays, or any of the other paraphernalia that has been invoked to explain how the 
brain could make effective use of the single, real-valued degree of freedom in the 
timing of a spike (Hopfield, 1995). 

The coding scheme we have proposed would be far more convincing if we could 
show how it was learned and could demonstrate that it was effective in a simula­
tion. There are two ways to design a learning algorithm for such spiking neurons. 
We could work in the relatively low-dimensional space of the instantiation param­
eters and design the learning to produce the right representations and interactions 
between representations in this space. Or we could treat this space as an implicit 
emergent property of the network and design the learning algorithm to optimize 



Spiking Boltzmann Machines 125 

some objective function in the much higher-dimensional space of neural activities 
in the hope that this will create representations that can be understood using the 
implicit space of instantiation parameters. We chose the latter approach. 

3 A learning algorithm for restricted Boltzmann machines 

Hinton (1999) describes a learning algorithm for probabilistic generative models 
that are composed of a number of experts. Each expert specifies a probability 
distribution over the visible variables and the experts are combined by multiplying 
these distributions together and renormalizing. 

(1) 

where d is a data vector in a discrete space, Om is all the parameters of individual 
model m, Pm(d\Om) is the probability of d under model m, and i is an index over 
all possible vectors in the data space. 

The coding scheme we have described is just a product of experts in which each 
spike is an expert. We first summarize the Product of Experts learning rule for a 
restricted Boltzmann machine (RBM) which consists of a layer of stochastic binary 
visible units connected to a layer of stochastic binary hidden units with no intralayer 
connections. We then extend RBM's to deal with temporal data. 

In an RBM, each hidden unit is an expert. When it is off it specifies a uniform 
distribution over the states of the visible units . When it is on, its weight to each 
visible unit specifies the log odds that the visible unit is on. Multiplying together 
the distributions specified by different hidden units is achieved by adding the log 
odds. Inference in an RBM is much easier than in a causal belief net because there 
is no explaining away. The hidden states, S j, are conditionally independent given 
the visible states, Si, and the distribution of Sj is given by the standard logistic 
function a: p(Sj = 1) = a(L:i WijSi). Conversely, the hidden states of an RBM are 
marginally dependent so it is easy for an RBM to learn population codes in which 
units may be highly correlated. It is hard to do this in causal belief nets with one 
hidden layer because the generative model of a causal belief net assumes marginal 
independence. 

An RBM can be trained by following the gradient of the log likelihood of the data: 

(2) 

where < SiSj >0 is the expected value of SiSj when data is clamped on the visible 
units and the hidden states are sampled from their conditional distribution given the 
data, and < SiSj >00 is the expected value of SiSj after prolonged Gibbs sampling 
that alternates between sampling from the conditional distribution of the hidden 
states given the visible states and vice versa. 

This learning rule not work well because the sampling noise in the estimate of 
< SiSj >00 swamps the gradient. It is far more effective to maximize the difference 
between the log likelihood of the data and the log likelihood of the one-step recon­
structions of the data that are produced by first picking binary hidden states from 
their conditional distribution given the data and then picking binary visible states 
from their conditional distribution given the hidden states. The gradient of the log 



126 G. E. Hinton and A. D. Brown 

likelihood of the one-step reconstructions is complicated because changing a weight 
changes the probability distribution of the reconstructions: 

+ (3) 

where Ql is the distribution of the one-step reconstructions of the training data and 
Qoo is the equilibrium distribution (i.e. the stationary distribution of prolonged 
Gibbs sampling). Fortunately, the cumbersome third term is sufficiently small that 
ignoring it does not prevent the vector of weight changes from having a positive 
cosine with the true gradient of the difference of the log likelhoods so the following 
very simple learning rule works much better than Eq. 2. 

(4) 

4 Restricted Boltzmann machines through time 

Using a restricted Boltzmann machine we can represent time by spatializing it, i.e. 
taking each visible unit, i, and hidden unit, j, and replicating them through time 
with the constraint that the weight WijT between replica t of i and replica t + T 

of j does not depend on t. To implement the desired temporal smoothing, we also 
force the weights to be a smooth function of T that has the shape of the temporal 
kernel, shown in Figure 3. The only remaining degree of freedom in the weights 
between replicas of i and replicas of j is the scale of the temporal kernel and it is 
this scale that is learned. The replicas of the visible and hidden units still form 
a bipartite graph and the probability distribution over the hidden replicas can be 
inferred exactly without considering data that lies further into the future than the 
width of the temporal kernel. 

One problem with the restricted Boltzmann machine when we spatialize time is 
that hidden units at one time step have no memory of their states at previous time 
steps; they only see the data. If we were to add undirected connections between 
hidden units at different time steps, then the architecture would return to a fully 
connected Boltzmann machine in which the hidden units are no longer conditionally 
independent given the data. A useful trick borrowed from Elman nets is to allow the 
hidden units to see their previous states, but to treat these observations like data 
that cannot be modified by future hidden states. Thus, the hidden states may still 
be inferred independently without resorting to Gibbs sampling. The connections 
between hidden layer weights also follow the time course of the temporal kernel. 
These connections act as a predictive prior over the hidden units. It is important 
to note that these forward connections are not required for the network to model a 
sequence, but only for the purposes of extrapolating into the future. 

Figure 3: The form of the temporal kernel. 



Spiking Boltzmann Machines 

Now the probability that Sj(t) = 1 given the states of the visible units is, 

P(Sj(t) = 1) = u (~W,jh,(t) + ~ W,;h,(t)) . 

127 

where hi(t) is the convolution of the history of visible unit i with the temporal 
kernel, 

00 

T=O 

and hk(t), the convolution of the hidden unit history, is computed similarly. 2 

Learning the weights follows immediately from this formula for doing inference. In 
the positive phase the visible units are clamped at each time step and the posterior 
of the hidden units conditioned on the data is computed (we assume zero boundary 
conditions for time before t = 0). Then in the negative phase we sample from the 
posterior of the hidden units, and compute the distribution over the visible units 
at each time step given these hidden unit states. In each phase the correlations 
between the hidden and visible units are computed and the learning rule is, 

00 00 

AWij = L L r(7) ((Sj(t)Si(t - 7))0 - (Sj(t)Si(t - 7))1) . 
t=O T=O 

5 Results 

We trained this network on a sequence of 8x8 synthetic images of a Gaussian blob 
moving in a circular path. In the following diagrams we display the time sequence 
of images as a matrix. Each row of the matrix represents a single image with its 
pixels stretched out into a vector in scanline order, and each column is the time 
course of a single pixel. The intensity f the pixel is represented by the area of the 
white patch. We used 20 hidden units. Figure 5a shows a segment (200 time steps) 
of the time series which was used in training. In this sequence the period of the 
blob is 80 time steps. 

Figure 5b shows how the trained model reconstructs the data after we sample from 
the hidden layer units. Once we have trained the model it is possible to do fore­
casting by clamping visible layer units for a segment of a sequence and then doing 
iterative Gibbs sampling to generate future points in the sequence. Figure 5c shows 
that given 50 time steps from the series, the model can predict reasonably far into 
the future, before the pattern dies out. One problem with these simulations is that 
we are treating the real valued intensities in the images as probabilities. While this 
works for the blob images, where the values can be viewed as the probabilities of 
pixels in a binary image being on, this is not true for more natural images. 

6 Discussion 

In our initial simulations we used a causal sigmoid belief network (SBN) rather 
than a restricted Boltzmann machine. Inference in an SBN is much more difficult 
than in an RBM. It requires Gibbs sampling or severe approximations, and even 
if a temporal kernel is used to ensure that a replica of a hidden unit at one time 

2Computing the conditional probability distribution over the visible units given the 
hidden states is done in a similar fashion, with the caveat that the weights in each direction 
must be symmetric. Thus, the convolution is done using the reverse kernel. 



128 G. E. Hinton and A. D. Brown 

a) b) c) 

Figure 4: a) The original data, b) reconstruction of the data, and c) prediction of 
the data given 50 time steps of the sequence. The black line indicates where the 
prediction begins. 

has no connections to replicas of visible units at very different times, the posterior 
distribution of the hidden units still depends on data far in the future. The Gibbs 
sampling made our SBN simulations very slow and the sampling noise made the 
learning far less effective than in the RBM. Although the RBM simulations seem 
closer to biological plausibility, they too suffer from a major problem. To apply the 
learning procedure it is necessary to reconstruct the data from the hidden states and 
we do not know how to do this without interfering with the incoming datastream. 
In our simulations we simply ignored this problem by allowing a visible unit to have 
both an observed value and a reconstructed value at the same time. 

Acknowledgements 
We thank Zoubin Ghahramani, Peter Dayan, Rich Zemel, Terry Sejnowski and Radford 
Neal for helpful discussions. This research was funded by grants from the Gatsby Foun­
dation and NSERC. 

References 
Anderson, C.H. & van Essen, D.C (1994). Neurobiological computational systems. In J.M 
Zureda, R.J. Marks, & C.J. Robinson (Eds.), Computational Intelligence Imitating Life 
213-222. New York: IEEE Press. 

Hinton, G. E. (1999) Products of Experts. ICANN 99: Ninth international conference on 
Artificial Neural Networks, Edinburgh, 1-6. 

Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986) Distributed representation­
s. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition. Volume 1: Foundations, MIT Press, 
Cambridge, MA. 

Hopfield, J. (1995). Pattern recognition computation using action potential timing for 
stimulus representation. Nature, 376, 33-36. 


