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Abstract 

We propose a new and efficient technique for incorporating contextual 
information into object classification. Most of the current techniques face 
the problem of exponential computation cost. In this paper, we propose a 
new general framework that incorporates partial context at a linear cost. 
This technique is applied to microscopic urinalysis image recognition, 
resulting in a significant improvement of recognition rate over the context 
free approach. This gain would have been impossible using conventional 
context incorporation techniques. 

1 BACKGROUND: RECOGNITION IN CONTEXT 

There are a number of pattern recognition problem domains where the classification of an 
object should be based on more than simply the appearance of the object itself. In remote 
sensing image classification, where each pixel is part of ground cover, a pixel is more like­
ly to be a glacier if it is in a mountainous area, than if surrounded by pixels of residential 
areas. In text analysis, one can expect to find certain letters occurring regularly in particu­
lar arrangement with other letters(qu, ee,est, tion, etc.). The information conveyed by the 
accompanying entities is referred to as contextual information. Human experts apply con­
textual information in their decision making [2][ 6]. It makes sense to design techniques and 
algorithms to make computers aggregate and utilize a more complete set of information in 
their decision making the way human experts do. In pattern recognition systems, however, 
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the primary (and often only) source of information used to identify an object is the set of 
measurements, or features , associated with the object itself. Augmenting this information 
by incorporating context into the classification process can yield significant benefits. 

Consider a set of N objects Ti , i = 1, ... N. With each object we associate a 
class label Ci that is a member of a label set n = {1 , ... , D} . Each object Ti 
is characterized by a set of measurements Xi E R P, which we call a feature vec­
tor. Many techniques [1][2][4J[6} incorporate context by conditioning the posterior 
probability of objects ' identities on the joint features of all accompanying objects. i.e .• 
P(Cl, C2,··· , cNlxl , . . . , XN). and then maximizing it with respectto Cl, C2, . .. , CN . It can 

be shown thatp(cl,c2, . . . ,cNlxl, . . . ,xN) ex p(cllxl) ... p(CNlxN) (~ci ""'(N\ given p 1 •.. p CN 

certain reasonable assumptions. 

Once the context-free posterior probabilities p( Ci IXi) are known. e.g. through the 
use of a standard machine learning model such as a neural network, computing 
P(Cl, ... ,CNlxl, . . . ,XN) for all possible Cl, ... ,CN would entail (2N + 1)DN multi­
plications. and finding the maximum has complexity of DN. which is intractable for large 
Nand D. [2J 

Another problem with this formulation is the estimation of the high dimensional joint dis­
tribution p( Cl, ... , CN), which is ill-posed and data hungry. 

One way of dealing with these problems is to limit context to local regions. With this 
approach, only the pixels in a close neighborhood. or letters immediately adjacent are con­
sidered [4][6][7J. Such techniques may be ignoring useful information, and will not apply 
to situations where context doesn't have such locality, as in the case of microscopic uri­
nalysis image recognition. Another way is to simplify the problem using specific domain 
knowledge [1], but this is only possible in certain domains. 

These difficulties motivate the efficient incorporation of partial context as a general frame­
work, formulated in section 2. In section 3, we discuss microscopic urinalysis image recog­
nition. and address the importance of using context for this application. Also in section 3, 
techniques are proposed to identify relevant context. Empirical results are shown in section 
4. followed by discussions in section 5. 

2 FORMULATION FOR INCORPORATION OF PARTIAL 
CONTEXT 

To avoid the exponential computational cost of using the identities of all accompanying 
objects directly as context, we use "partial context". denoted by A. It is called "partial" be­
cause it is derived from the class labels. as opposed to consisting of an explicit labelling of 
all objects. The physical definition of A depends on the problem at hand. In our application. 
A represents the presence or absence of certain classes. Then the posterior probability of 
an object Ti having class label Ci conditioned on its feature vector and the relevant context 
A is 

p(XiICi, A)P(Ci ; A) 
P(Xi ; A) 

We assume that the feature distribution of an object depends only on its own class. i.e., 
p(xilci, A) = p(xi lci) . This assumption is roughly true for most real world problems. 
Then. 
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( .1 . A) - p(xilci)p(Ci; A) _ ( .1 .)p(ciIA ) p(A)p(Xi) 
pC~Xt, - -pCtXt 

p(xijJ~IIA) p(Ci) P(Xi; A) 
()( p(cilxi) () = p(cilxi)P(Ci, A) 

P Ci 
where p(Ci, A) = p~(~j~) is called the context ratio, through which context plays its role. 

The context-sensitive posterior probability p( Ci lXi, A) is obtained through the context-free 
posterior probability p(cilxi) modified by the context ratio P(Ci, A) . 

The partial-context maximum likelihood decision rule chooses class label Ci for element i 
such that 

Ci = argmaxp(cilxi, A) (I) 
Cj 

A systematic approach to identify relevant context A is addressed in section 3.3. 

The partial-context approach treats each element in a set individually, but with addi­
tional information from the context-bearing factor A. Once p(cilxi) are known for all 
i = 1, ... , N, and the context A is obtained, to maximize p(cilxi, A) from D possible 
values that Ci can take on and for all i, the total number of multiplications is 2N, and the 
complexity for finding the maximum is N D. Both are linear in N. The density estimation 
part is also trivial since it is very easy to estimate p(cIA). 

3 MICROSCOPIC URINALYSIS 

3.1 INTRODUCTION 

Urine is one of the most complex body fluid specimens: it potentially contains about 60 
meaningful types of elements. Microscopic urinalysis detects the presence of elements that 
often provide early diagnostic information concerning dysfunction, infection, or inflamma­
tion of the kidneys and urinary tract. Thus this non-invasive technique can be of great value 
in clinical case management. Traditional manual microscopic analysis relies on human op­
erators who read the samples visually and identify them, and therefore is time-consuming, 
labor-intensive and difficult to standardize. Automated microscopy of all specimens is more 
practical than manual microscopy, because it eliminates variation among different technol­
ogists. This variation becomes more pronounced when the same technologist examines 
increasing numbers of specimens. Also, it is less labor-intensive and thus less costly than 
manual microscopy. It also provides more consistent and accurate results. An automat­
ed urinalysis system workstation (The Y ellowI RI ST M, International Remote Imaging 
Systems, Inc.) has been introduced in numerous clinical laboratories for automated mi­
croscopy. Urine samples are processed and examined at lOOx (low power field) and 400x 
magnifications (high power field) with bright-field illumination. The Y ellowI RI ST M au­
tomated system collects video images of formed analytes in a stream of un centrifuged urine 
passing an optical assembly. Each image has one analyte in it. These images are given to a 
computer algorithm for automatic identification of analytes. 

Context is rich in urinalysis and plays a crucial role in analyte classification. Some com­
binations of analytes are more likely than others. For instance, the presence of bacteria 
indicates the presence of white blood cells, since bacteria tend to cause infection and thus 
trigger the production of more white blood cells. If amorphous crystals show up, they tend 
to show up in bunches and in all sizes. Therefore, if there are amorphous crystallook-alikes 
in various sizes, it is quite possible that they are amorphous crystals. Squamous epithelial 
cells can appear both flat or rolled up. If squamous epithelial cells in one form are detected, 
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Table I: Features extracted from urine anylates images 
reature number 

( 

2 

4 

9 

10 
II 
12 
13 
14 
IS 
16 

reature desc:ription 

tht: m~an or hluc distribution 
the mean of gn...-cn dislrihulmn 
15th paccnlile of £ray level hislo£ram 
85 th percenlile of gray level hislogmm 
lh~ standard devia.tion \11' gray level intensity 
energy of the (.aplacian lransl\)rmalion of grey level image 

then it is likely that there are squamous epithelial cells in the other form. Utilizing such 
context is crucial for classification accuracy. 

The classes we are looking at are bacteria, calcium oxalate crystals, red blood cells, white 
blood cells, budding yeast, amorphous crystals, uric acid crystals, and artifacts. The task 
of automated microscopic urinalysis is, given a urine specimen that consists of up to a 
few hundred images of analytes, to classify each analyte into one of these classes. The 
automated urinalysis system we developed consists of three steps: image processing and 
feature extraction, learning and pattern recognition, and context incorporation. Figure 1 
shows some example analyte images. Table 1 gives a list of features extracted from analyte 
images. 1 

3.2 CONTEXT-FREE CLASSIFICATION 

The features are fed into a nonlinear feed-forward neural network with 16 inputs, 15 hidden 
units with sigmoid transfer functions, and 8 sigmoid output units. A cross-entropy error 
function is used in order to give the output a probability interpretation. Denote the input 
feature vector as x, the network outputs a D dimensional vector (D = 8 in our case) 
p = {p(dlx)} , d = 1, ... , D, where p(dlx) is 

p{dlx) = Prob( an analyte belongs to class dl feature x) 
The decision made at this stage is 

d{x) = argmax p(dlx) 
d 

3.3 IDENTIFICATION OF RELEVANT PARTIAL CONTEXT 

Not all classes are relevant in terms of carrying contextual information. We propose three 
criteria based on which we can systematicalIy investigate the relevance of the class pres­
ence. To use these criteria, we need to know the folIowing distributions: the class prior dis­
tribution p(c) for c = 1, ... ,D; the conditional class distribution p{cIAd) for c = 1, ... ,D 

1 >'1 and >'2 are respectively the larger and the smaller eigenvalues of the second moment matrix 
of an image. 
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and d = 1, . .. ,D; and the class presence prior distribution p(Ad) for d = 1, . . . , D. Ad is 
a binary random variable indicating the presence of class d. Ad = 1 if class d is present, 
and Ad = 0 otherwise. All these distributions can be easily estimated from the database. 

The first criterion is the correlation coefficient between the presence of any two class­
es; the second one is the classical mutual information I(e; Ad) between the presence of a 
class Ad and the class probability pee), where I(e; Ad) is defined as I(e; Ad) = H(e) -
H(eIAd) where H(e) = 2:~1 p(e = i)ln(p(e = i)) is the entropy of the class priors and 
H(eIAd) = P(Ad = I)H(eIAd = 1)+P(Ad = O)H(eIAd = 0) is the conditional entropy 
of e conditioned on Ad. The third criterion is what we call the expected relative entropy 
D(eIIAd) between the presence ofa class Ad and the labeling probability pee) , which we 
define as D(eIIAd) = P(Ad = I)D(p(e)llp(eIAd = 1)) + P(Ad = O)D(p(e)llp(eIAd = 

0)) where D(p(e)llp(eIAd 1)) 2:~lP(e = ilAd = l)ln(p(c;/l~t)=l)) and 

D(p(e)llp(eIAd = 0)) = 2:~1 p(e = ilAd = O)ln(p(C;/l~t)=O)) 

According to the first criterion, one type of analyte is considered relevant to another if the 
absolute value of their correlation coefficient is beyond a certain threshold. It shows that 
uric acid crystals, budding yeast and calcium oxalate crystals are not relevant to any other 
types even by a generous threshold of 0.10. Similarly, the bigger the mutual information 
between the presence of a class and the class distribution, the more relevant this class is. 
Ranking the analyte types in terms of I(e; Ad) in a descending manner gives rise to the 
following list: bacteria, amorphous crystals, red blood cells, white blood cells, uric acid 
crystals, budding yeast and calcium oxalate crystals. Once again, ranking the analyte types 
in terms of D(eIIAd) in a descending manner gives rise to the following list: bacteria, red 
blood cells, amorphous crystals, white blood cells, calcium oxalate crystals, budding yeast 
and uric acid crystals. All three criteria lead to similar conclusions regarding the relevance 
of class presence - bacteria, red blood cells, amorphous crystals, and white blood cells are 
relevant, while calcium oxalate crystals, budding yeast and uric acid crystals are not. (Baed 
on prior knowledge, we discard artifacts from the outset as an irrelevant class.) 

3.4 ALGORITHM FOR INCORPORATING PARTIAL CONTEXT 

Once the M relevant classes are identified, the following algorithm is used to incorporate 
partial context. 

Step 0 Estimate the priors p(eIAd) and pee), for e E {I, 2, .. . , D} and d E {I, 2, ... , D}. 

Step 1 For a given Xi, compute p(edxi) for ei = 1,2, . .. , Dusing whichever base machine 
learning model is preferred ( in our case, a neural network). 

Step 2 Let the M relevant classes be R1 , ..• , RM. According to the no-context p( ei IXi) 
and certain criteria for detecting the presence or absence of all the relevant classes, get 

ARI , · ·· ,ARM' 

Step 3 Letp(ei lXi , Ao) = p(eilxi), where Ao is the null element. Incorporate context from 
each relevant class sequentially, i.e., for m = 1 to M, iteratively compute 

p(ei IARTn)p(AR"J 
p(ei lxi; Ao, .. . , ARm_I ' ARTn) = p(ei lxi' Ao,.· . , ARTn_J pee) 

Step 4 Recompute A RI , . . . ,ARM based on the new class labellings. Return to step 3 and 
repeat until algorithm converges.2 

2Hence, the algorithm has an E-M flavor, in that it goes back and forth between finding the most 
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amorphous crystals 

artifacts 

calcium oxalate crystals 

hyaline casts 

Figure I: Example of some of the analyte images. 

Step 5 Label the objects according to the final context-contammg 
p(cilxi, ARI'·· · ' ARM)' i.e., Ci = argmaxp(ciIXi, AR1 , ... , ARM) for i = 1, ... , N. 

Ci 

This algorithm is invariant with respect to the ordering of the M relevant classes in 
(Ai, ... , AM). The proof is omitted here. 

4 RESULTS 

The algorithm using partia.1 context was tested on a database of 83 urine specimens, contain­
ing a total of 20,276 analyte images. Four classes are considered relevant according to the 
criteria described in section 3.3: bacteria, red blood cells, white blood cells and amorphous 
crystals. We measure two types of error: analyte-by-analyte error, and specimen diagnostic 
error. The average analyte-by-analyte error is reduced from 44.48% before using context 
to 36.66% after, resulting a relative error reduction of 17.6% (Table 2). The diagnosis for a 
specimen is either normal or abnormal. Tables 3 and 4 compare the diagnostic performance 
with and without using context, and Table 5 lists the relative changes. We can see using 
context significantly increases correct diagnosis for both normal and abnormal specimens, 
and reduces both false positives and false negatives. 

without context with context 
average element-by-element error 44.48 % 36.66 % 

Table 2: Comparison of using and not using contextual information for analyte-by-analyte 
error. 

probable class labels given the context and determining the context given the class labels. 
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estimated normal estimated abnormal 
truly normal 40.96 % 7.23 % 

truly abnormal 19.28 % 32.53 % 

Table 3: Diagnostic confusion matrix not using context 

estimated normal estimated abnormal 
truly normal 42.17 % 6.02% 

truly abnormal 16.87 % 34.94 % 

Table 4: Diagnostic confusion matrix using context 

estimated normal estimated abnormal 
truly normal +2.95 % -16.73 % 

truly abnormal - 12.50 % +7.41 % 

Table 5: Relative accuracy improvement (diagonal elements) and error reduction (off diag­
onal elements) in the diagnostic confusion matrix by using context. 

5 CONCLUSIONS 
We proposed a novel framework that can incorporate context in a simple and efficien­
t manner, avoiding exponential computation and high dimensional density estimation. The 
application of the partial context technique to microscopic urinalysis image recognition 
demonstrated the efficacy of the algorithm. This algorithm is not domain dependent, thus 
can be readily generalized to other pattern recognition areas. 
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