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Abstract 

We consider the problem of learning a grid-based map using a robot 
with noisy sensors and actuators. We compare two approaches: 
online EM, where the map is treated as a fixed parameter, and 
Bayesian inference, where the map is a (matrix-valued) random 
variable. We show that even on a very simple example, online EM 
can get stuck in local minima, which causes the robot to get "lost" 
and the resulting map to be useless. By contrast, the Bayesian 
approach, by maintaining multiple hypotheses, is much more ro­
bust. We then introduce a method for approximating the Bayesian 
solution, called Rao-Blackwellised particle filtering. We show that 
this approximation, when coupled with an active learning strategy, 
is fast but accurate. 

1 Introduction 

The problem of getting mobile robots to autonomously learn maps of their envi­
ronment has been widely studied (see e.g., [9] for a collection of recent papers). 
The basic difficulty is that the robot must know exactly where it is (a problem 
called localization), so that it can update the right part of the map. However, to 
know where it is, the robot must already have a map: relying on dead-reckoning 
alone (Le., integrating the motor commands) is unreliable because of noise in the 
actuators (slippage and drift). 

One obvious solution is to use EM, where we alternate between estimating the 
location given the map (the E step), and estimating the map given the location 
(the M step). Indeed, this approach has been successfully used by several groups 
[8, 11, 12]. However, in all of these works, the trajectory of the robot was specified 
by hand, and the map was learned off-line. For fully autonomous operation, and to 
cope with dynamic environments, the map must be learned online. 

We consider two approaches to online learning: online EM, and Bayesian inference, 
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Figure 1: (a) The POMDP represented as a graphical model. L t is the location, 
Mt(i) is the label of the i'th grid cell, At is the action, and Zt is the observation. 
Dotted circles denote variables that EM treats as parameters. (b) A one-dimensional 
grid with binary labels (white = 0, black = 1). (c) A two-dimensional grid, with 
four labels (closed doors, open doors, walls, and free space). 

where we treat the map as a random variable. In Section 3, we show that the 
Bayesian approach can lead to much better results than online EM; unfortunately, 
it is computationally intractable, so in Section 4, we discuss an approximation based 
on Rao-BIackwellised particle filtering. 

2 The model 

We now precisely define the model that we will use in this paper; it is similar to, but 
much simpler than, the occupancy grid model in [12]. The map is defined to be a 
grid, where each cell has a label which represents what the robot would see at that 
point. More formally, the map at time t is a vector of discrete random variables, 
M t (i) E {I, ... , No}, where 1 ::; i ::; N L. Of course, the map is not observed 
directly, and nor is the robot's location, L t E {I, ... , NL}. What is observed is 
Zt E {l, ... ,No}, the label of the cell at the robot's current location, and At E 
{I, ... ,N A}, the action chosen by the robot just before time t. The conditional 
independence assumptions we are making are illustrated in Figure l(a). We start 
by considering the very simple one-dimensional grid shown in Figure l(b), where 
there are just two actions, move right (-+) and move left (f-), and just two labels, 
off (0) and on (1). This is sufficiently small that we can perform exact Bayesian 
inference. Later, we will generalize to two dimensions. 

The prior for the location is a delta function with all its mass on the first (left-most) 
cell, independent of AI. The transition model for the location is as follows. 

{ 

Pa if j = i + 1, j < N 

P ( ·1 . A ) 1 - Pa if j = i, j < N 
r Lt = J Lt-I =~, t =-+ = 1 if j = i = N 

o otherwise 

where Pa is the probability of a successful action, i.e., 1 - Pa is the probability that 
the robot's wheels slip. There is an analogous equation for the case when At =f-. 
Note that it is not possible to pass through the "rightmost" cell; the robot can use 
this information to help localize itself. 

The prior for the map is a product of the priors for each cell, which are uniform. 
(We could model correlation between neighboring cells using a Markov Random 
Field, although this is computationally expensive.) The transition model for the 
map is a product of the transition models for each cell, which are defined as follows: 



Bayesian Map Learning in Dynamic Environments 1017 

the probability that a 0 becomes a 1 or vice versa is Pc (probability of change), and 
hence the probability that the cell label remains the same is 1 - Pc. 

Finally, the observation model is 

Pr(Zt = klMt = (mI , ... , mNL), Lt = i) = { Po 
1- Po 

if mi = k 
otherwise 

where Po is the probability of a succesful observation, Le. , 1 - Po is the probability 
of a classification error. Another way of writing this, that will be useful later, is to 
introduce the dummy deterministic variable, Z:, which has the following distribu­
tion: Pr(Z: = klMt = (mI, ... ,mNL) ,Lt = i) = 8(k,mi) , where 8(a, b) = 1 if a = b 
and is 0 otherwise. Thus Z: acts just like a multiplexer, selecting out a component 
of Mt as determined by the "gate" Lt. The output of the multiplexer is then passed 
through a noisy channel, which flips bits with probability 1 - Po, to produce Zt. 

3 Bayesian learning compared to EM 

For simplicity, we assume that the parameters Po, Pa and Pc, are all known. (In this 
section, we use Po = 0.9, Pa = 0.8 and Pc = 0, so the world is somewhat "slippery", 
but static in appearance.) The state estimation problem is to compute the belief 
state Pr(Lt , MtIYl:t), where Yt = (Zt, At) is the evidence at time t; this is equiv­
alent to performing online inference in the graphical model shown in Figure 1(a). 
Unfortunately, even though we have assumed that the components of M t are a pri­
ori independent , they become correlated by virtue of sharing a common child, Zt. 
That is, since the true location of the robot is unknown, all of the cells are possible 
causes of the observation, and they "compete" to "explain" the data. Hence all of 
the hidden variables become coupled, and the belief state has size O(NL2NL). 

If the world is static (Le. , Pc = 0) , we can treat M as a fixed , but unknown, 
parameter; this can then be combined with the noisy sensor model to define an 
HMM with the following observation matrix: 

B(i , k) ~ Pr(Zt = kiLt = i; M) = L Pr(Zt = klZ: = j)8(M(i),j) 
j 

We can then learn B using EM, as in [8, 11, 12]. (We assume for now that the HMM 
transition matrix is independent of the map, and encodes the known topology of 
the grid, Le., the robot can move to any neighboring cell, no matter what its label 
is. We will lift this restriction in the 2D example. 

We can formulate an online version of EM as follows. We use fixed-lag s"moothing 
with a sliding window of length W, and compute the expected sufficient statis­
tics (ESS) for the observation matrix within this window as follows: Ot(i, k) = 
2:~=t-W : Z," =k LT1t(i) , where LTlt(i) = Pr(LT = iIYl:t)· We can compute L using 
the forwards-backwards algorithm, using Lt-W-Ilt-I as the prior. (The initial con­
dition is L = 11", where 11" is the (known) prior for Lo.) Thus the cost per time step is 
O(2W Nl). In the M step, we normalize each row of Ot + d x Ot-l, where 0 < d < 1 
is a decay constant, to get the new estimate of B . We need to downweight the 
previous ESS since they were computed using out-of-date parameters; in addition, 
exponential forgetting allows us to handle dynamic environments. [1] discuss some 
variations on this algorithm. 
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Figure 2: (a) The full joint posterior on P(Mt !Yl:t). 0 and 255, on the axis into the 
page, represent the maps where every cell is off and every cell is on, respectively; the 
mode at t = 16 is for map 171, which corresponds to the correct pattern 01010101. 
(b-d) Estimated map. Light cells are more likely to contains Os, so the correct 
pattern should have light bars in the odd rows. (b) The marginals of the exact 
joint. (c) Online EM. (d) Omine EM. 

As the window length increases, past locations are allowed to look at more and 
more future data, and hence their estimates become more accurate; however, the 
space and time requirements increase. Nevertheless, there are occasions when even 
the maximum window size (i.e., looking all the way back to 'T = 0) will perform 
poorly, because of the greedy hill-climbing nature of EM. For a simple example of 
this, consider the environment shown in Figure 1 (b). Suppose the robot starts in 
cell 1, keeps going right until it comes to the end of the "corridor", and then heads 
back "home". Suppose further that there is a single slippage error at t = 4, so the 
actual path and observation sequence of the robot is as follows: 

t 1 2 
L t 1 2 
Zt 0 1 
At --7 

3 4 
3 4 
o 1 

--7 --7 

5 6 7 8 
456 7 
101 0 
--7 --7 --7 --7 

9 10 11 
876 
101 
+- +- +-

12 13 14 15 16 
54321 
01010 
+- +- +- +- +-

To study the effect of this sequence, we computed Pr(Mt , Lt!Yl:t) by applying the 
junction tree algorithm to the graphical model in Figure l(a). We then marginalized 
out Lt to compute the posterior P(Mt ): see Figure 2(a). At t = 1, there are 27 
modes, corresponding to all possible bit patterns on the unobserved cells. At each 
time step, the robot thinks it is moving one step to the right. Hence at t = 8, the 
robot thinks it is in cell 8, and observes O. When it tries to move rightf it knows 
it will remain in cell 8 (since the robot knows where the boundaries are). Hence at 
t = 9, it is almost 70% confident that it is in cell 8. At t = 9, it observes a 1, which 
contradicts its previous observation of O. There are two possible explanations: this 
is a sensor error, or there was a motor error. Which of these is more likely depends 
on the relative values of the sensor noise, Po, and the system noise, Pa. In our 
experiments, we found that the motor error hypothesis is much more likely; hence 
the mode of the posterior jumps from the wrong map (in which M(5) = 1) to the 
right map (in which M(5) = 0). Furthermore, as the robot returns to "familiar 
territory", it is able to better localize itself (see Figure 3(a)), and continues to learn 
the map even for far-away cells, because they are all correlated (in Figure 2(b), the 
entry for cell 8 becomes sharper even as the robot returns to cell 1) 

We now compare the Bayesian solution with EM. Online EM with no smoothing 
was not able to learn the correct map. Adding smoothing with the maximum 
window size of Wt = t did not improve matters: it is still unable to escape the local 
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Figure 3: Estimated location. Light cells are more likely to contain the robot. 
(a) Optimal Bayes solution which marginalizes out the map. (b) Dead-reckoning 
solution which ignores the map. Notice how "blurry" it is. (c) Online EM solution 
using fixed-lag smoothing with a maximal window length. 

minimum in which M(5) = 1, as shown in Figure 2(c). (We tried various values of 
the decay rate d, from 0.1 to 0.9, and found that it made little difference.) With the 
wrong map, the robot "gets lost" on the return journey: see Figure 3(c). Offline 
EM, on the other hand, does very well, as shown in Figure 2(d); although the initial 
estimate oflocation (see Figure 3(b)) is rather diffuse, as it updates the map it can 
use the benefit of hindsight to figure out where it must have been. 

4 Rao-Blackwellised particle filtering 

Although the Bayesian solution exhibits some desirable properties, its running time 
is exponential in the size of the environment. In this section, we discuss a sequential 
Monte Carlo algorithm called particle filtering (also known as sm filtering, the 
bootstrap filter, the condensation algorithm, survival of the fittest, etc; see [10, 4] 
for recent reviews). Particle filtering (PF) has already been successfully applied to 
the problem of (global) robot localization [5]. However, in that case, the state space 
was only of dimension 3: the unknowns were the position of the robot, (x, y) E lR?, 
and its orientation, () E [0,211"]. In our case, the state space is discrete and of 
dimension 0(1 + NL), since we need to keep track of the map as well as the robot's 
location (we ignore orientation in this paper). 

Particle filtering can be very inefficient in high-dimensional spaces. The key obser­
vation which makes it tractable in this context is that, if Ll:t were known, then the 
posterior on M t would be factored; hence M t can be marginalized out analytically, 
and we only need to sample Lt. This idea is known in the statistics literature as Rao­
Blackwellisation [10, 41. In more detail, we will approximate the posterior at time t 
using a set of weighted particles, where each particle specifies a trajectory L1:t , and 
the corresponding conditionally factored representation of P(Mt) = TIi P(Mt(i)); 
we will denote the j'th particle at time t as bF). Note that we do not need to actu­
ally store the complete trajectories Ll:t: we only need the most recent value of L. 
The approach we take is essentially the same as the one used in the conditional lin­
ear Gaussian models of [4, 3], except we replace the Kalman filter update with one 
which exploits the conditionally factored representation of P(Mt ). In particular, 
the algorithm is as follows: For each particle j = 1, ... , N s , we do the following: 

1. Sample L~~l from a proposal distribution, which we discuss below. 

2. Update each component of the map separately using L~~l and Zt+1 

Pr(Mt~lIL~~l = i,bP),Zt+l) oc Pr(zt+1IMt~l(i)) rrPr(Mi~l(k)IMF)(k)) 
k 
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Figure 4: (a-b) Results using 50 particles. (c-d) Results using BK. 

. (j) (j) (j) (j) . 3. Update the weIghts: Wt+l = u t+1 wt ,where Ut+l IS defined below. 

We then res ample Ns particles from the normalised weights, using Liu's residual 
resampling algorithm [10], and set WWl = 1/ Ns for all j. We consider two proposal 
distributions. The first is a simple one which just uses the transition model to 
predict the new location: Pr(Lt+1lb~j), at+1) . In this case, the incremental weight 

is U~~l <X P(zt+1IL~~l,b~j)). The optimal proposal distribution (the one which 
minimizes the variance of the importance weights) takes the most recent evidence 
into account, and can be shown to have the form Pr(Lt+1lb~j), at+l, Zt+l) with 
incremental weight Ut+1 <X P(Zt+1lb~j)) . Computing this requires marginalizing out 
Mt+l and Lt+l' which can be done in O(NL) time (details omitted). 

In Figure 4, we show the results of applying the above algorithm to the same problem 
as in Section 3; it can be seen that it approximates the exact solution- very closely, 
using only 50 particles. The results shown are for a particular random number seed; 
other seeds produce qualitatively very similar results, indicating that 50 particles 
is in fact sufficient in this case. Obviously, as we increase the number of particles, 
the error and variance decrease, but the running time increases (linearly). 

The question of how many particles to use is a difficult one: it depends both on 
the noise parameters and the structure of the environment (if every cell has a 
unique label, localization is easy). Since we are sampling trajectories, the number 
of hypotheses, and hence the number of particles needed, grows exponentially with 
time. In the above example, the robot was able to localize itself quite accurately 
when it reached the end of the corridor, where most hypotheses "died off". In 
general, the number of particles will depend on the length of the longest cycle in 
the environment, so we will need to use active learning to ensure tractability. 

In the dynamic two-dimensional grid world of Figure l(c), we chose actions so as 
to maximize expected discounted reward (using policy iteration), where the reward 
for visiting cell i is 

where H(·) is the normalized entropy. Hence, if the robot is "lost", so H(Lt ) ~ 1, 
the robot will try to visit a cell which it is certain about (see [6] for a better 
approach); otherwise, it will try to explore uncertain cells. After learning the map, 
the robot spends its time visiting each of the doors, to keep its knowledge of their 
state (open or closed) up-to-date. 

We now briefly consider some alternative approximate inference algorithms. Exam­
ining the graphical structure of our model (see Figure l(a)) , we see that it is identical 
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to a Factorial HMM [7] (ignoring the inputs). Unfortunately, we cannot use their 
variational approximation, because they assume a conditional Gaussian observa­
tion model, whereas ours is almost deterministic. Another popular approximate 
inference algorithm for dynamic Bayes nets (DBNs) is the "BK algorithm" [2, 1]. 
This entails projecting the joint posterior at time t onto a product-of-marginals 
representation 

P(Lt, Mt(1) , . . . , Mt(NdIYl:t) = P(Lt IYl :t) II P(Mt(i)IYl :t) 
i 

and using this as a factored prior for Bayesian updating at time t + 1. Given a 
factored prior, we can compute a factored posterior in O(NL) time by conditioning 
on each Lt+1, and then averaging. We found that the BK method does very poorly 
on this problem (see Figure 4), because it ignores correlation between the cells. Of 
course, it is possible to use pairwise or higher order marginals for tightly coupled 
sets of variables. Unfortunately, the running time is exponential in the size of the 
largest marginal , and in our case, all the Mt(i) variables are coupled. 
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