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Abstract 

Hierarchical learning machines are non-regular and non-identifiable 
statistical models, whose true parameter sets are analytic sets with 
singularities. Using algebraic analysis, we rigorously prove that 
the stochastic complexity of a non-identifiable learning machine 
is asymptotically equal to >'1 log n - (ml - 1) log log n + const., 
where n is the number of training samples. Moreover we show that 
the rational number >'1 and the integer ml can be algorithmically 
calculated using resolution of singularities in algebraic geometry. 
Also we obtain inequalities 0 < >'1 ~ d/2 and 1 ~ ml ~ d, where d 
is the number of parameters. 

1 Introduction 

Hierarchical learning machines such as multi-layer perceptrons, radial basis func­
tions, and normal mixtures are non-regular and non-identifiable learning machines. 
If the true distribution is almost contained in a learning model, then the set of 
true parameters is not one point but an analytic variety [4][9][3][10]. This paper 
establishes the mathematical foundation to analyze such learning machines based 
on algebraic analysis and algebraic geometry. 

Let us consider a learning machine represented by a conditional probability density 
p(xlw) where x is an M dimensional vector and w is a d dimensional parameter. We 
assume that n training samples xn = {Xi; i = 1,2, ... , n} are independently taken 
from the true probability distribution q(x), and that the set of true parameters 

Wo = {w E W ; p(xlw) = q(x) (a.s. q(x)) } 
is not empty. In Bayes statistics, the estimated distribution p(xlxn) is defined by 

J 1 n 

p(xlxn) = p(x lw) Pn(w)dw, Pn(w) = Zn IIp(XiIW) <p(w), 

where <p( w) is an a priori probability density on Rd, and Zn is a normalizing con­
stant. The generalization error is defined by 

J q(x) 
K(n) = E x n { q(x) log p(xlxn) dx} 
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where Ex" {-} shows the expectation value over all training samples xn. One of 
the main purposes in learning theory is to clarify how fast K(n) converges to zero 
as n tends to infinity. Using the log-loss function h(x, w) = logq(x) -logp(x, w), 
we define the K ullback distance and the empirical one, 

J 1 n 
H(w) = h(x, w)q(x)dx, H(w, xn) = ;; L h(Xi' w). 

t=l 

Note that the set of true parameters is equal to the set of zeros of H(w), Wo = 
{w E W ; H ( w) = O}. If the true parameter set Wo consists of only one point, the 
learning machine p(xlw) is called identifiable, if otherwise non-identifiable. It should 
be emphasized that, in non-identifiable learning machines, Wo is not a manifold 
but an analytic set with singular points, in general. Let us define the stochastic 
complexity by 

F(n} = -Exn {log J exp( -nH(w, xn))<p(w)dw}. (1) 

Then we have an important relation between the stochastic complexity F(n) and 
the generalization error K ( n ) 

K(n) = F(n + 1) - F(n), 

which represents that K(n) is equal to the increase of F(n) [1]. In this paper, we 
show the rigorous asymptotic form of the stochastic complexity F( n) for general 
non-identifiable learning machines. 

2 Main Results 

We need three assumptions upon which the main results are proven. 

(A.I) The probability density <p(w} is infinite times continuously differentiable and 
its support, W == supp <p, is compact. In other words, <p E Cff. 

(A.2) The log loss function, h(x, w) = log q(x) - logp(x, w), is continuous for x in 
the support Q == suppq, and is analytic for w in an open set W' :> W. 

(A.3) Let {rj(x, w*); j = 1,2, ... , d} be the associated convergence radii of h(x, w) 
at w*, in other words, Taylor expansion of h(x, w) at w* = (wi, ... , wd), 

00 

h(x, w) = L ak 1 k2 • .. kd(X)(WI - wi)kl (W2 - W2)k 2 ••• (Wd - Wd)kd, 
k1, .. ,kd=O 

absolutely converges in IWj - wjl < rj(x, w*). Assume inf inf rj(x, w*) > ° for 
xEQw'EW 

j=I,2, ... ,d. 

Theorem 1 Assume (A.l),(A.2), and (A.3). Then, there exist a rational number 
Al > 0, a natural number ml, and a constant C, such that 

IF(n) - A1logn + (ml - 1) loglognl < C 

holds for an arbitrary natural number n. 

Remarks. (1) If q(x) is compact supported, then the assumption (A.3) is automat­
ically satisfied. (2) Without assumptions (A.l) and (A.3), we can prove the upper 
bound, F(n) ::; A1logn - (ml - 1) log log n + const. 
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From Theorem 1, if the generalization error K (n) has the asymptotic expansion, 
then it should be 

K(n) = Al _ mi - 1 + o( 1 ). 
n nlogn nlogn 

As is well known, if the model is identifiable and has the positive definite Fisher 
information matrix, then Al = d/2 (d is the dimension of the parameter space) and 
mi = 1. However, hierarchical learning models such as multi-layer perceptrons, 
radial basis functions, and normal mixtures have smaller Al and larger ml, in other 
words, hierarchical models are better learning machines than regular ones if Bayes 
estimation is applied. Constants Al and mi are characterized by the following 
theorem. 

Theorem 2 Assume the same conditions as theorem 1. Let f > 0 be a sufficiently 
small constant. The holomorphic function in Re(z) > 0, 

J(z) = ( H(wrtp(w)dw, 
1 H(W)<l 

can be analytically continued to the entire complex plane as a meromorphic function 
whose poles are on the negative part of the real axis, and the constants -AI and mi 
in theorem 1 are equal to the largest pole of J(z) and its multiplicity, respectively. 

The proofs of above theorems are explained in the following section. Let w = g(u) 
is an arbitrary analytic function from a set U C Rd to W. Then J(z) is invariant 
under the mapping, 

{H(w), tp(w)} -+ {H(g(u)), tp(g(u))Jg'(u) I}, 

where Jg'(u)1 = J det(awi/aUj)J is Jacobian. This fact shows that Al and mi are in­
variant under a bi-rational mapping. In section 4, we show an algorithm to calculate 
Al and mi by using this invariance and resolution of singularities. 

3 Mathematical Structure 

In this section, we present an outline of the proof and its mathematical structure. 

3.1 Upper bound and b-function 

For a sufficiently small constant f > 0, we define F*(n) by 

F*(n) = -log ( exp( -nH(w)) tp(w) dw. 
lH(w)<l 

Then by using the Jensen's inequality, we obtain F(n) ~ F*(n). To evaluate F*(n), 
we need the b-function in algebraic analysis [6][7]. Sato, Bernstein, Bjork, and 
Kashiwara proved that, for an arbitrary analytic function H(w), there exist a dif­
ferential operator D(w, aw , z) which is a polynomial for z, and a polynomial b(z) 
whose zeros are rational numbers on the negative part of the real axis, such that 

D(w, aw , z)H(wr+1 = b(z)H(wr (2) 

for any z E C and any w E Wl = {w E W; H(w) < f}. By using the relation eq.(2), 
the holomorphic function J(z) in Re(z) > 0, 

J(z) == ( H(w)ztp(w)dw = b(l) { H(W)Z+I D~tp(w)dw, 
1 H(W)<E z 1 H(W)<l 
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can be analytically continued to the entire complex plane as a meromorphic func­
tion whose poles are on the negative part of the real axis. The poles, which are 
rational numbers and ordered from the origin to the minus infinity, are referred to 
as -AI, -A2' -A3, ... , and their multiplicities are also referred to as ml, m2, m3, ... 
Let Ckm be the coefficient of the m-th order of Laurent expansion of J(z) at -Ak. 
Then, 

K m" 
JK(Z) == J(z) - L L (z :~:)-m 

k=1 m=1 

(3) 

is holomorphic in Re(z) > -AK+l, and IJK(z)1 ---t 0 (izi ---t 00, Re(z) > -AK+l)' 
Let us define a function 

J(t) = J <5(t - H(w))cp(w)dw 

for 0 < t < € and J(t) = 0 for € ~ t ~ 1. Then I(t) connects the function F*(n) 
with J(z) by the relations, 

J(z) 11 tZ J(t) dt, 

1 

F*(n) = -log 10 exp( -nt) J(t) dt. 

The inverse Laplace transform gives the asymptotic expansion of J(t) as t ---t 0, 

resulting in the asymptotic expansion of F*(n), 

i n t dt 
F*(n) = -log exp(-t) 1(-) -

o n n 
= Adogn - (ml - 1) loglogn + 0(1), 

which is the upper bound of F(n). 

3.2 Lower Bound 

We define a random variable 

A(xn) = sup 1 nl/2(H(w, xn) - H(w)) / H(W)I/2 I. (4) 
wEW 

Then, we prove in Appendix that there exists a constant Co which is independent 
of n such that 

Ex n {A(xn)2} < Co. (5) 

By using an inequality ab ~ (a2 + b2 )/2, 

1 
nH(w,xn) ~ nH(w) - A(xn)(nH(w))1/2 ~ "2{nH(w) - A(xn)2}, 

which derives a lower bound, 

(6) 
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The first term in eq.(6) is bounded. Let the second term be F*(n) , then 

-IOg(Zl + Z2) 

r exp( - nH(w)) <p(w)dw ~ const . n-)'I (log n)m1 -1 

JH(W)<€ 2 

r nH(w) nE 
JH(W)?€ exp(- 2 ) <p(w)dw ~ exp(-2) ' 

which proves the lower bound of F( n), 

F(n) ~ >'llogn - (m1 - 1) loglogn + canst. 

4 Resolution of Singularities 

In this section, we construct a method to calculate >'1 and mI. First of all, we cover 
the compact set Wo with a finite union of open sets Wo,. In other words, Wo C 
Uo, Wo,. Hironaka's resolution of singularities [5J [2J ensures that, for an arbitrary 
analytic function H(w), we can algorithmically find an open set Uo, C Rd (Uo, 
contains the origin) and an analytic function go, : Uo, ~ W o, such that 

H(go,(u)) = a(u) U~I U~2 ... U~d (u E Uo, ) (7) 

where a( u) > 0 is a positive function and ki ~ 0 (1 ~ i ~ d) are even integers (a( u) 
and k i depend on Uo,). Note that Jacobian Ig~(u) 1 = 0 if and only if u E g~l(WO). 

finite 
( ()) I I ( ) I """' PI P2 P,l + R( ) <p go, u go, U = ~ CPI ,P2 ''' ',Pd u1 u2 .. , ud u , 

By combining eq.(7) with eq.(8), we obtain 

lo,(z) r H(w)z<p(w) 
Jwc> 

1 a(u) {U~I U~2 .. . U~d V Ufl U~2 .. 'U~d dUl dU2 .. · dUd . 
U'" 

For real z , maxo, lo,(z) ~ l(z) ~ Lo, lo,(z), 

>'1 = min min min 
0, (PI , ... ,Pd) l::;q::;d 

and m1 is equal to the number of q which attains the minimum, min. 
l::;q::;d 

(8) 

Remark. In a neighborhood of Wo E Wo, the analytic function H(w) is equivalent 
to a polynomial H Wo ( w ), in other words, there exists constants C1, C2 > 0 such that 
c1Hwo(w) ~ H(w) ~ C2Hwo(W) . Hironaka's theorem constructs the resolution map 
go, for any polynomial H Wo (w) algorithmically in the finite procedures ( blowing­
ups for nonsingular manifolds in singularities are recursively applied [5]). From the 
above discussion, we obtain an inequality, 1 ~ m ~ d. Moreover there exists 'Y > 0 
such that H(w) ~ 'Ylw - wol 2 in the neighborhood of Wo E Wo, we obtain >'1 ~ d/2. 

Example. Let us consider a model (x, y) E R2 and w = (a, b, c, d) E R4 , 

p(x, ylw) 

?jJ(x, a, b, c, d) 

1 1 2 
= Po(x) (271')1/2 exp(-"2(Y - ?jJ (x, w)) ), 

atanh(bx) + ctanh(dx), 
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where Po(x) is a compact support probability density (not estimated). We also 
assume that the true regression function is y = 'I/J(x, 0, 0, 0,0). The set of true 
parameters is 

Wo = {Ex'I/J(X, a, b, c, d)2 = O} = {ab + cd = 0 and ab3 + cd3 = O}. 

Assumptions (A.1),(A.2), and (A.3) are satisfied. The singularity in Wo which gives 
the smallest Al is the origin and the average loss function in the neighborhood WO 
of the origin is equivalent to the polynomial Ho(a, b, c, d) = (ab+cd)2 + (ab3 +cd3)2, 
(see[9]). Using blowing-ups, we find a map 9 : (x, y, z, w) t-+ (a, b, c, d), 

a = x, b = y3w - yzw, C = zwx, d = y, 

by which the singularity at the origin is resolved. 

J(z) r Ho(a, b, c, d)z<p(a, b, c, d)da db de dd iwo 
J { x2y6 w2[1 + (z + w2(y2 - z)3)2JYlxy3w l<p(g(x, y, z, w)) dxdydzdw, 

which shows that Al = 2/3 and ml = 1, resulting that F(n) = (2/3) logn + Const. 
If the generalization error can be asymptotically expanded, then K(n) ~ (2/3n). 

5 Conclusion 

Mathematical foundation for non-identifiable learning machines is constructed based 
on algebraic analysis and algebraic geometry. We obtained both the rigorous asymp­
totic form of the stochastic complexity and an algorithm to calculate it. 

Appendix 

In the appendix, we show the inequality eq.(5). 

Lemma 1 Assume conditions (A.1), (A.2) and (A.3) . Then 

1 n 
Exn {sup I r.;; L [ h(Xi, w) - Ex h(X, w) J 12} < 00. 

wEW yn i=1 

This lemma is proven by using just the same method as [10]. In order to prove 
(5), we divide 'SUPwEW' in eq.(4) into 'SUPH(w)2':(' and'suPH(w)«'. Finiteness of 
the first half is directly proven by Lemma 1. Let us prove the second half is also 
finite. We can assume without loss of generality that w is in the neighborhood 
of Wo E Wo, because W can be covered by a finite union of neighborhoods. In 
each neighborhood, by using Taylor expansion of an analytic function, we can find 
functions {fj(x,w)} and {gj(w) = TIi(Wi -WOi)a;} such that 

J 

h(x, w) = L gj(w)fj(x, w), 
j=1 

(9) 

where {fj(x, wo)} are linearly independent functions of x and gj(wo) = O. Since 
gj(w)fj(x, w) is a part of Taylor expansion among Wo, fJ(x, w) satisfies 

1 n 

Exn {:~X-< I Vn ~(fj(Xi' w) - ExfJ(X, W))12} < 00. (10) 
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By using a definition H(w) == IH(w, xn) - H(w)l, 

1 n J 2 

I;:;: L {L 9j (w)(!i (Xi, w) - Ex !j(X, w))}1 
i=1 j=1 

J J 1 n 

L9j(w)2 L{;:;: L(fj(Xi , w) - Ex !j(X, w))}2 < 
j=1 j=1 i=1 

where we used Cauchy-Schwarz's inequality. On the other hand, the inequality 
log x :2: (1/2)(logx)2 - X + 1 (x > 0) shows that 

J 

H(w) = J q(x) log tX )) dx :2: ~ J q(x)(log tX
)) )2dx :2: a2

0 L 9j(w)2 
px,w 2 px,w j=l 

where ao > 0 is the smallest eigen value of the positive definite symmetric matrix 
Ex {!i(X, WO)!k(X, wo)}. Lastly, combining 

A 2 J n 
n nH(w) ao "" 1 "" 2 

A(X ) = :~K,< H(w) ::; 2 :~K,< ~ {Vn f=t(fj(Xi , w) - Ex !j(X, w))} 

with eq.(lO), we obtain eq.(5). 
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