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Abstract 

Unsupervised learning algorithms are designed to extract struc­
ture from data samples. Reliable and robust inference requires a 
guarantee that extracted structures are typical for the data source, 
Le., similar structures have to be inferred from a second sample 
set of the same data source. The overfitting phenomenon in max­
imum entropy based annealing algorithms is exemplarily studied 
for a class of histogram clustering models. Bernstein's inequality 
for large deviations is used to determine the maximally achievable 
approximation quality parameterized by a minimal temperature. 
Monte Carlo simulations support the proposed model selection cri­
terion by finite temperature annealing. 

1 Introduction 

Learning algorithms are designed to extract structure from data. Two classes of 
algorithms have been widely discussed in the literature - supervised and unsuper­
vised learning. The distinction between the two classes depends on supervision or 
teacher information which is either available to the learning algorithm or missing. 
This paper applies statistical learning theory to the problem of unsupervised learn­
ing. In particular, error bounds as a protection against overfitting are derived for 
the recently developed Asymmetric Clustering Model (ACM) for co-occurrence 
data [6]. These theoretical results show that the continuation method "determin­
istic annealing" yields robustness of the learning results in the sense of statistical 
learning theory. The computational temperature of annealing algorithms plays the 
role of a control parameter which regulates the complexity of the learning machine. 
Let us assume that a hypothesis class 1£ of loss functions h(x; a) is given. These 
loss functions measure the quality of structures in data. The complexity of 1£ is 
controlled by coarsening, i.e., we define a 'Y-cover of 1£. Informally, the inference 
principle advocated by us performs learning by two inference steps: (i) determine 
the optimal approximation level l' for consistent learning (in terms of large risk devi­
ations); (ii) given the optimal approximation level 1', average over all hypotheses in 
an appropriate neighborhood of the empirical minimizer. The result of the inference 
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procedure is not a single hypothesis but a set of hypotheses. This set is represented 
either by an average of loss functions or, alternatively, by a typical member of this 
set. This induction approach is named Empirical Risk Approximation (ERA) [2]. 
The reader should note that the learning algorithm has to return an average struc­
ture which is typical in a 'Y-cover sense but it is not supposed to return the hypothesis 
with minimal empirical risk as in Vapnik's "Empirical Risk Minimization" (ERM) 
induction principle for classification and regression [9]. The loss function with mini­
mal empirical risk is usually a structure with maximal complexity, e.g., in clustering 
the ERM principle will necessarily yield a solution with the maximal number of clus­
ters. The ERM principle, therefore, is not suitable as a model selection principle to 
determine the number of clusters which are stable under sample fluctuations. The 
ERA principle with its approximation accuracy 'Y solves this problem by controlling 
the effective complexity of the hypothesis class. 
In spirit, this approach is similar to the Gibbs-algorithm presented for example in 
[3]. The Gibbs-algorithm samples a random hypothesis from the version space to 
predict the label of the 1 + lth data point Xl+!o The version space is defined as 
the set of hypotheses which are consistent with the first 1 given data points. In our 
approach we use an alternative definition of consistency, where all hypothesis in an 
appropriate neighborhood of the empirical minimizer define the version space (see 
also [4]). Averaging over this neighborhood yields a structure with risk equivalent to 
the expected risk obtained by random sampling from this set of hypotheses. There 
exists also a tight methodological relationship to [7] and [4] where learning curves 
for the learning of two class classifiers are derived using techniques from statistical 
mechanics. 

2 The Empirical Risk Approximation Principle 

The data samples Z = {zr E 0, 1 ~ r ~ l} which have to be analyzed by the unsu­
pervised learning algorithm are elements of a suitable object (resp. feature) space 
O. The samples are distributed according to a measure J.L which is not assumed to 
be known for the analysis.l 
A mathematically precise statement of the ERA principle requires several defini­
tions which formalize the notion of searching for structure in the data. The qual­
ity of structures extracted from the data set Z is evaluated by the empirical risk 
R(a; Z) := t 2:~=1 h(zr; a) of a structure a given the training set Z. The function 
h(z; a) is known as loss function in statistics. It measures the costs for processing a 
generic datum z with model a. Each value a E A parameterizes an individual loss 
function with A denoting the set of possible parameters. The loss function which 
minimizes the empirical risk is denoted by &1. := arg minaEA R( a; Z). 
The relevant quality measure for learning is the expected risk R(a) .­
In h(z; a) dJ.L(z). The optimal structure to be inferred from the data is a1. .­
argminaEA R(a). The distribution J.L is assumed to decay sufficiently fast with 
bounded rth moments Ell {Ih(z; a) - R(a)IT} ~ rh·r - 2V II {h(z; an, 'Va E A 
(r > 2). Ell {.} and VII {.} denote expectation and variance of a random vari­
able, respectively. T is a distribution dependent constant. 
ERA requires the learning algorithm to determine a set hypotheses on the basis 
of the finest consistently learnable cover of the hypothesis class. Given a learning 
accuracy 'Y a subset of parameters A-y = {al,'" ,aIA-yI-l} U {&1.} can be defined 
such that the hypothesis class 1i is covered by the function balls with index sets 
B-y(a) := {a' : In Ih(z; a') - h(z; a)1 dJ.L(z) ~ 'Y}, i. e. A C UaEA-y B-y(a). The em-

1 Knowledge of covering numbers is required in the following analysis which is a weaker 
type of information than complete knowledge of the probability measure IL (see also [5]). 
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pirical minimizer &1. has been added to the cover to simplify bounding arguments. 
Large deviation theory is used to determine the approximation accuracy '1 for learn­
ing a hypothesis from the hypothesis class 11.. The expected risk of the empirical 
minimizer exceeds the global minimum of the expected risk R(01.) by faT with a 
probability bounded by Bernstein's inequality [8] 

< P { sup IR(o) - R(o)1 ~ -21 (faT - 'Y)} 
aEA-y 

( l(f-'Y/aT )2) _ 
< 21A')'1 exp - 8 + 4r (f _ 'Y/aT) = o. (1) 

The complexity I A')' I of the coarsened hypothesis class has to be small enough to 
guarantee with high confidence small f-deviations. 2 This large deviation inequality 
weighs two competing effects in the learning problem, i. e. the probability of a 
large deviation exponentially decreases with growing sample size I, whereas a large 
deviation becomes increasingly likely with growing cardinality of the 'Y-cover of the 
hypothesis class. According to (1) the sample complexity Io (-y, f, 0) is defined by 

to (f - '1/ aT) 2 2 
log IA')'I - 8 + 4r (f _ 'Y/aT) + log "8 = o. (2) 

With probability 1 - 0 the deviation of the empirical risk from the expected risk is 
bounded by ~ (foPta T - '1) =: 'Yapp • Averaging over a set of functions which exceed 
the empirical minimizer by no more than 2'Yapp in empirical risk yields an average 
hypothesis corresponding to the statistically significant structure in the data, i.e., 
R( 01.) - R( &1.) ~ R( 01. ) + 'Yapp - (R( &1.) - 'Yapp ) ~ 2'Yapp since R( 01.) ~ R( &1.) by 
definition. The key task in the following remains to calculate the minimal precision 
f( '1) as a function of the approximation '1 and to bound from above the cardinality 
I A')' I of the 'Y-cover for specific learning problems. 

3 Asymmetric clustering model 

The asymmetric clustering model was developed for the analysis resp. grouping of 
objects characterized by co-occurrence of objects and certain feature values [6]. 
Application domains for this explorative data analysis approach are for example 
texture segmentation, statistical language modeling or document retrieval. 
Denote by n = X x y the product space of objects Xi EX, 1 ~ i ~ nand 
features Y j E y, 1 ~ j ~ j. The Xi E X are characterized by observations 
Z = {zr} = {(Xi(r),Yj(r)) ,T = 1, ... ,l}. The sufficient statistics of how often 
the object-feature pair (Xi, Y j) occurs in the data set Z is measured by the set 
of frequencies {'f]ij : number of observations (Xi, Yj) /total number of observations}. 
Derived measurements are the frequency of observi~g object Xi, i. e. 'f]i = 2:;=1 'f]ij 
and the frequency of observing feature Yj given object Xi, i. e. 'f]jli = 'f]ij/'f]i. The 
asymmetric clustering model defines a generative model of a finite mixture of com­
ponent probability distributions in feature space with cluster-conditional distri­
butions q = (qjlv) ' 1 ~ j ~ j, 1 ~ v ~ k (see [6]). We introduce indicator 
variables M iv E {O, 1} for the membership of object Xi in cluster v E {I, ... ,k}. 
2::=1 M iv = 1 Vi : 1 ~ i ~ n enforces the uniqueness constraint for assignments. 

2The maximal standard deviation (1 T := sUPaEA-y y'V {h(z; a)} defines the scale to 
measure deviations of the empirical risk from the expected risk (see [2]). 
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Using these variables the observed data Z are distributed according to the genera­
tive model over X x y: 

1 k 
P {xi,YjIM,q} = - ~ Mivqjlv' (3) n L--v=1 

For the analysis of the unknown data source - characterized (at least approxima­
tively) by the empirical data Z - a structure 0: = (M, q) with M E {O, I} n x k has 
to be inferred. The aim of an ACM analysis is to group the objects Xi as coded by 
the unknown indicator variables M iv and to estimate for each cluster v a prototyp­
ical feature distribution qjlv' 

Using the loss function h(Xi' Yj; 0:) = logn - 2:~=1 M iv logqjlv the maximiza­
tion of the likelihood can be formulated as minimization of the empirical risk: 
R(o:; Z) = 2:~=1 2:;=11}ij h(xi, Yj; 0:), where the essential quantity to be minimized 

is the expected risk: R(o:) = 2:~=1 2:;=1 ptrue {Xi, Yj} h(Xi' Yj; 0:). Using the max­
imum entropy principle the following annealing equations are derived [6]: 

A 2:~1 (Miv )1}ij _ ~n (Miv )1}i (4) 
qjlv "n (M ) - L--. "n (M )1}j1i, wi=1 iv t=1 wh=1 hv 

exp [.8 2:;=1 1}jli log Q]lv ] 

The critical temperature: Due to the limited precision of the observed data it 
is natural to study histogram clustering as a learning problem with the hypothesis 
class 1£ = {-2:vMivlogqjlv :Miv E {0,1} /\ 2:vMiv = 1/\ Qjlv E H,t, .. · ,1}/\ 
2:j qjlv = I}. The limited number of observations results in a limited precision of 
the frequencies 1}jli' The value Q;lv = 0 has been excluded since it causes infinite 
expected risk for ptrue {Yj IXi} > O. The size of the regularized hypothesis class A-y 
can be upper bounded by the cardinality of the complete hypothesis class divided 
by the minimal cardinality of a 'Y-function ball centered at a function of the 'Y-cover 

A-y, i. e. IA-yl ~ 11£1/!llin IB-y(&)I. 
oEA'T 

The cardinality of a function ball with radius 'Y can be approximated by adopting 
techniques from asymptotic analysis [1] (8 (x) = g for x ~ 0): 

IB-y(5)1 = L L 8 ('Y - L ~ptrue {Yj IXi} IIOg ~~I~(i) I) (6) 
M { . } i J' %Im(t) q,lo • 

and the entropy S is given by 

S(q,Q,x) = 'Yx - Lv Qv (L j qjlv -1) + 

.!. ~ ,log ~ exp (-x ~ , ptrue {Yj IXi} IIOg _ Qjlp I). (7) 
n L--, L--p L--J %Im(i) 

The auxiliary variables Q = {Q v } ~=1 are Lagrange parameters to enforce the nor­
malizations 2:j qjlv = 1. Choosing %10 = qjlm(i) Vm(i) = 0:, we obtain an approxi­
mation of the integral. The reader should note that a saddlepoint approximation in 



220 J. M Buhmann and M Held 

the usual sense is only applicable for the parameter x but will fail for the q, Q param­
eters since the integrand is maximal at the non-differentiability point of the absolute 
value function. We, therefore, expand S (q, Q,x) up to linear terms 0 (q - q) and 
integrate piece-wise. 

Using the abbreviation Kill := Lj ptrue {Yj Ixd IIog qj~:~i) I the following saddle 
point approximation for the integral over x is obtained: 

1 I:n I:k • exp ( -XKia) , = -. Pij.£Kjlj.£ wIth Pia = L (~)" n t=1 j.£=1 j.£ exp -XKij.£ 
(8) 

The entropy S evaluated at q = q yields in combination with the Laplace approxi­
mation [1] an estimate for the cardinality of the ,-cover 

log I A')' I = n (log k - S) + -21 I:. KipP ip (I: P illKill - KiP) x2 
t,p II 

(9) 

where the second term results from the second order term of the Taylor expansion 
around the saddle point. Inserting this complexity in equation (2) yields an equation 
which determines the required number of samples 10 for a fixed precision f and 
confidence o. This equation defines a functional relationship between the precision 
f and the approximation quality, for fixed sample size 10 and confidence o. Under 
this assumption the precision f depends on , in a non-monotone fashion, i. e. 

(10) 

using the abbreviation C = log I A')' I + log~. The minimum of the function €(,) 
defines a compromise between uncertainty originating from empirical fluctuations 
and the loss of precision due to the approximation by a ,-cover. Differentiating 
with respect to , and setting the result to zero (df(T)/d, = 0) yields as upper 
bound for the inverse temperature: 

~ 1 10 ( 10+C7"2 )-1 
x < - - 7" + -;:;~:;;;==~iiT 

- (1T 2n V210C + 7"2C2 
(11) 

Analogous to estimates of k-means, phase-transitions occur in ACM while lowering 
the temperature. The mixture model for the data at hand can be partitioned 
into more and more components, revealing finer and finer details of the generation 
process. The critical xopt defines the resolution limit below which details can not 
be resolved in a reliable fashion on the basis of the sample size 10 . 

Given the inverse temperature x the effective cardinality of the hypothesis class 
can be upper bounded via the solution of the fix point equation (8). On the other 
hand this cardinality defines with (11) and the sample size lo an upper bound on x. 
Iterating these two steps we finally obtain an upper bound for the critical inverse 
temperature given a sample size 10. 

Empirical Results: 
For the evaluation of the derived theoretical result a series of Monte-Carlo exper­
iments on artificial data has been performed for the asymmetric clustering model. 
Given the number of objects n = 30, the number of groups k = 5 and the size of the 
histograms f = 15 the generative model for this experiments was created randomly 
and is summarized in fig. 1. From this generative model sample sets of arbitrary 
size can be generated and the true distributions ptrue {Yj IXi} can be calculated. 
In figure 2a,b the predicted temperatures are compared to the empirically observed 
critical temperatures, which have been estimated on the basis of 2000 different sam­
ples of randomly generated co-occurrence data for each 10. The expected risk (solid) 
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v qjlv 
1 0.11,0.01,0.11,0.07,0.08,0.04,0.06,0,0.13,0.07, 0.08, 0.1, 0, 0.11,0.031 
2 0.18,0.1,0.09,0.02,0.05,0.09,0.08,0.03,0.06, 0.07, 0.03, 0.02, 0.07, 0.06, 0.05} 
3 0.17,0.05,0.05,0.06,0.06,0.05,0.03,0.11,0.09,0, 0.02,0.1,0.03,0.07, 0.11} 
4 0.15,0.07,0.1,0.03,0.09,0.03,0.04,0.05,0.06, 0.05,0.08,0.04,0.08,0.09, 0.04} 
5 0.09,0.09,0.07,0.1,0.07,0.06,0.06,0.11,0.07,0.07, 0.1, 0.02,0.07,0.02, O} 

m(i} = (5,3,2,5,2,2,5,4,2,2,2,4,1,5,3,5,3,4,1 , 2,2,3,1,1,2, 5, 5, 2, 2, 1) 

Figure 1: Generative ACM model for the Monte-Carlo experiments. 

and empirical risk (dashed) of these 2000 inferred models are averaged. Overfitting 
sets in when the expected risk rises as a function of the inverse temperature x. 
Figure 2c indicates that on average the minimal expected risk is assumed when the 
effective number is smaller than or equal 5, i. e. the number of clusters of the true 
generative model. Predicting the right computational temperature, therefore, also 
enables the data analyst to solve the cluster validation problem for the asymmetric 
clustering model. Especially for 10 = 800 the sample fluctuations do not permit the 
estimate of five clusters and the minimal computational temperature prevents such 
an inference result. On the other hand for lo = 1600 and 10 = 2000 the minimal 
temperature prevents the algorithm to infer too many clusters, which would be an 
instance of overfitting. 
As an interesting point one should note that for an infinite number of observations 
the critical inverse temperature reaches a finite positive value and not more than 
the five effective clusters are extracted. At this point we conclude, that for the case 
of histogram clustering the Empirical Risk Approximation solves for realizable rules 
the problem of model validation, i. e. choosing the right number of clusters. 
Figure 2d summarizes predictions of the critical temperature on the basis of the 
empirical distribution 1]ij rather than the true distribution ptrue {Xi, Yj}. The em­
pirical distribution has been generated by a training sample set with x of eq. (11) 
being used as a plug-in estimator. The histogram depicts the predicted inverse 
temperature for 10 = 1200. The average of these plug-in estimators is equal to 
the predicted temperature for the true distribution. The estimates of x are biased 
towards too small inverse temperatures due to correlations between the parameter 
estimates and the stopping criterion. It is still an open question and focus of ongo­
ing work to rigorously bound the variance of this plug- in estimator. 
Empirically we observe a reduction of the variance of the expected risk occurring 
at the predicted temperature for higher sample sizes lo . 

4 Conclusions 

The two conditions that the empirical risk has to uniformly converge towards the 
expected risk and that all loss functions within an 2,&PP -range of the global empirical 
risk minimum have to be considered in the inference process limits the complexity 
of the underlying hypothesis class for a given number of samples. The maximum 
entropy method which has been widely employed in deterministic annealing proce­
dures for optimization problems is substantiated by our analysis. Solutions with 
too many clusters clearly overfit the data and do not generalize. The condition that 
the hypothesis class should only be divided in function balls of size , forces us to 
stop the stochastic search at the lower bound of the computational temperature. 
Another important result of this investigation is the fact that choosing the right 
stopping temperature for the annealing process not only avoids overfitting but also 
solves the cluster validation problem in the realizable case of ACM. A possible 
inference of too many clusters using the empirical risk functional is suppressed. 
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Figure 2: Comparison between the theoretically derived upper bound on x and 
the observed critical temperatures (minimum of the expected risk vs. x curve). 
Depicted are the plots for 10 = 800,1200,1600,2000. Vertical lines indicate the 
predicted critical temperatures. The average effective number of clusters is drawn 
in part c. In part d the distribution of the plug- in estimates is shown for La = 1200. 
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