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Abstract 

Recently, sample complexity bounds have been derived for problems in­
volving linear functions such as neural networks and support vector ma­
chines. In this paper, we extend some theoretical results in this area by 
deriving dimensional independent covering number bounds for regular­
ized linear functions under certain regularization conditions. We show 
that such bounds lead to a class of new methods for training linear clas­
sifiers with similar theoretical advantages of the support vector machine. 
Furthermore, we also present a theoretical analysis for these new meth­
ods from the asymptotic statistical point of view. This technique provides 
better description for large sample behaviors of these algorithms. 

1 Introduction 

In this paper, we are interested in the generalization performance of linear classifiers ob­
tained from certain algorithms. From computational learning theory point of view, such 
performance measurements, or sample complexity bounds, can be described by a quanti­
ty called covering number [11, 15, 17], which measures the size of a parametric function 
family. For two-class classification problem, the covering number can be bounded by a 
combinatorial quantity called VC-dimension [12, 17]. Following this work, researchers 
have found other combinatorial quantities (dimensions) useful for bounding the covering 
numbers. Consequently, the concept of VC-dimension has been generalized to deal with 
more general problems, for example in [15, 11]. 

Recently, Vapnik introduced the concept of support vector machine [16] which has been 
successful applied to many real problems. This method achieves good generalization by 
restricting the 2-norm of the weights of a separating hyperplane. A similar technique has 
been investigated by Bartlett [3], where the author studied the performance of neural net­
works when the I-norm of the weights is bounded. The same idea has also been applied 
in [13] to explain the effectiveness of the boosting algorithm. In this paper, we will extend 
their results and emphasize the importance of dimension independence. Specifically, we 
consider the following form of regularization method (with an emphasis on classification 
problems) which has been widely studied for regression problems both in statistics and in 
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numerical mathematics: 

inf Ex yL(w, 2:, y) = inf Ex yl(wT 2:Y) + Ag(W), w I W I 

(1) 

where Ex ,y is the expectation over a distribution of (2:, y), and y E {-1, 1} is the binary 
label of data vector 2:. To apply this fonnulation for the purpose oftraining linear classifiers. 
we can choose I as a decreasing function, such that I ( .) ~ 0, and choose 9 ( w) ~ 0 as 
a function that penalizes large w (liIl1w~oo g( w) -4 00). A is an appropriately chosen 
positive parameter to balance the two tenns. 

The paper is organized as follows. In Section 2, we briefly review the concept of covering 
numbers as well as the main results related to analyzing the perfonnance of learning algo­
rithms. In Section 3, we introduce the regularization idea. Our main goal is to construct 
regularization conditions so that dimension independent bounds on covering numbers can 
be obtained. Section 4 extends results from the previous section to nonlinear composition­
s of linear functions. In Section 5. we give an asymptotic fonnula for the generalization 
perfonnance of a learning algorithm, which will then be used to analyze an instance of 
SVM. Due to the space limitation, we will only present the main results and discuss their 
implications. The detailed derivations can be found in [18]. 

2 Covering numbers 

We fonnulate the learning problem as to find a parameter from random observations to 
minimize risk: given a loss function L( a, x) and n observations Xl = {x 1, ... , xn } 

independently drawn from a fixed but unknown distribution D, we want to find a that 
minimizes the expected loss over 2: (risk): 

R(a) = ExL(a,x)= / L(a,x)dP(x). (2) 

The most natural method for solving (2) using a limited number of observations is by the 
empirical risk minimization (ERM) method (cf [15, 16]). We simply choose a parameter 
a that minimizes the observed risk: 

1 n 

R(a,Xl ) = - LL(a,xi). (3) 
n i=l 

We denote the parameter obtained in this way as a erm (Xl)' The convergence behavior 
of this method can be analyzed by using the VC theoretical point of view. which relies 
on the unifonn convergence of the empirical risk (the unifonn law of large numbers): 
SUPa IR(a, Xl) - R(a)l. Such a bound can be obtained from quantities that measure 
the size of a Glivenko-Cantelli class. For finite number of indices, the family size can be 
measured simply by its cardinality. For general function families, a well known quantity to 
measure the degree ofunifonn convergence is the covering number which can be be dated 
back to Kolmogrov [8, 9]. The idea is to discretize (which can depend on the data Xl) the 
parameter space into N values a1, . .. ,aN SO that each L(a, .) can be approximated by 
L( ai, .) for some i. We shall only describe a simplified version relevant for our purposes. 

Definition 2.1 Let B be a metric space with metric p. Given a norm p, observations Xl = 
[Xl, ... ,xn ]. and vectors I(a, Xl) = [/(a, Xl)"" ,/(a, xn )] E Bn parameterized by 
a, the covering number in p-norm, denoted as Np (I, €, Xl)' is the minimum number of a 
collection o/vectors V1, ... ,Vm E B n such that Va. 3Vi: IIp(l(a,Xl),vi)lIp ::; n1/P€. 

We also denote Np(l, €, n) = maxx~ Np(l, €, Xl). 

Note that from the definition and the Jensen's inequality, we have Np ::; Nq for p ::; q. We 
will always assume the metric on R to be IX1 - x21 if not explicitly specified otherwise. 
The following theorem is due to Pollard [11]: 
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Theorem 2.1 ([11]) \;/n, f > ° and distribution D. 

-nf2 

P(s~p IR(a, X~) - R(a)1 > €j ~ 8E(Af1(L , f/8, X~)] exp( 128M2)' 

where M = sUPa,:z: L(a, x) - infa,:z: L(a, x). and X~ = {Xl, . .. ,X'l } are independently 
drawn from D. 

The constants in the above theorem can be improved for certain problems; see [4. 6, 15, 16] 
for related results. However, they yield very similar bounds. The result most relevant for 
this paper is a lemma in [3] where the 1-nonn covering number is replaced by the oo-nonn 
covering number. The latter can be bounded by a scale-sensitive combinatorial dimension 
[1], which can be bounded from the I-norm covering number if this covering number does 
not depend on n. These results can replace Theorem 2.1 to yield better estimates under 
certain circumstances. 

Since Bartlett's lemma in [3] is only for binary loss functions, we shall give a generalization 
so that it is comparable to Theorem 2.1 : 

Theorem 2.2 Let It and 12 be two functions: R n -+ [0, 1] such that /Y1 - Y21 ~ I implies 
It (Y1) ~ h(Y2) ~ h(Y1) where h : R n -+ [0,1] is a reference separatingfunction, then 

-nf2 

P[s~p[E:z:It(L(a, x») - Ex-;-h(L(a, x))] > f] ~ 4E[Afoo(L, I, X~)] exp( 32)' 

Note that in the extreme case that some choice of a achieves perfect generalization: 
E:z:h(L(a, x)) = 0, and assume that our choices of a(X1) always satisfy the condition 
EXf h(L( a, x» = 0, then better bounds can be obtained by using a refined version of the 
Chernoffbound. 

3 Covering number bounds for linear systems 

In this section, we present a few new bounds on covering numbers for the following form 
of real valued loss functions: 

d 

L(w, x) = xT w = L XiWi · (4) 
i=l 

As we shall see later, these bounds are relevant to the convergence properties of (1). Note 
that in order to apply Theorem 2.1, since Afl < Af2 , therefore it is sufficient to estimate 
Af2(L, €, n) for € > O. It is clear that Af2(L, f, ~ is not finite ifno restrictions on x and w 
are imposed. Therefore in the following, we will assume that each I/xil/p is bounded. and 
study conditions ofllw// q so that logAf(j, f, n) is independent or weakly dependent of d. 

Our first result generalizes a theorem of Bartlett [3]. The original results is with p = 00 

and q = 1, and the related technique has also appeared in [10, 13]. The proof uses a lemma 
that is attributed to Maurey (cf. [2, 7]). 

Theorem 3.1 V/lxi/lp ~ band Ilw/lq ~ a, where lip + 1/q == 1 and 2 ~ p ~ 00, then 

a2 b2 

log2 Af2(L, f, n) ~ r 7 1 Iog2 (2d + 1). 

The above bound on the covering number depends logarithmically on d, which is already 
quite weak (as compared to linear dependency on d in the standard situation). However, the 
bound in Theorem 3.1 is nottightforp < 00. For example, the following theorem improves 
the above bound for p = 2. Our technique of proof relies on the SVD decomposition [5] 
for matrices, which improves a similar result in [14 J by a logarithmic factor. 
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The next theorem shows that if lip + llq > 1, then the 2-nonn covering number is also 
mdependent of dimension. 

Theorem 3.3 Let L(w, x) = xTw. {f'llxillp :::; band Ilwllq :::; a, where 1 :::; q :::; 2 and 
J = lip + 1jq - 1 > 0, then 

One consequence of this theorem is a potentially refined explanation for the boosting al­
gorithm. In [13], the boosting algorithm has been analyzed by using a technique related to 
results in [3] which essentially rely on Theorem 3.1 withp = 00. Unfortunately, the bound 
contains a logarithmic dependency on d (in the most general case) which does not seem to 
fully explain the fact that in many cases the perfonnance of the boosting algorithm keeps 
improving as d increases. However, this seemingly mysterious behavior might be better 
understood from Theorem 3.3 under the assumption that the data is more restricted than 
simply being oo-nonn bounded. For example, when the contribution of the wrong predic­
tions is bounded by a constant (or grow very slowly as d increases), then we can regard 
its p-th nonn bounded for some p < 00 . In this case, Theorem 3.3 implies dimensional 
independent generalization. 

If we want to apply Theorem 2.2, then it is necessary to obtain bounds for infinity-nonn 
covering numbers. The following theorem gives such bounds by using a result from online 
learning. 

Theorem 3.4 lfllxillp :::; band Ilwllq :::; a, where 2 :::; p < 00 and lip + 11q = 1, then 
tiE> O. 

In the case of p = 00, an entropy condition can be used to obtain dimensional independent 
covering number bounds. 

Definition 3.1 Let f1. = [f1.i] be a vector with positive entries such that 11f1.lll = 1 (in this 
case, we call f1. a distribution vector). Let x = [Xi] "# 0 be a vector of the same length, then 
we define the weighted relative entropy of x with re5pect to f1. as: 

~ IXil 
entro~(x) = ~ IXil ln J-Lillxlh' 

• 

Theorem 3.5 Given a distribution vector f1., If llxi lloo :::; band Ilwlll :::; a and 
entro ~ ( w) :::; c, where we assume that w has non-negative entries, then tiE> 0, 

36b2( a2 + ac) 
log2 Noo(L, E, n) :::; E2 log2[2 r 4ab/ E + 21n + 1] . 

Theorems in this section can be combined with Theorem 4.1 to fonn more complex cover­
ing number bounds for nonlinear compositions oflinear functions. 
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4 Nonlinear extensions 

Consider the following system: 

L([a, w], x) = I(g(a, x) + wTh(a, x)) , (5) 

where x is the observation, and [a, w] is the parameter. We assume that 1 is a nonlinear 
function with bounded total variation. 

Definition 4.1 A/unction 1 : R -+ R is said to satisfy the Lipschitz condition with param­
eter"Y ifVx, y: I/( x) - I(y) I ~ )'Ix - yl· 

Definition 4.2 The total variation of a/unction 1 : R -+ R is defined as 
L 

TV(f, x) = sup L I/(xi) - I(xi-dl · 
:2:0<X1 ' <Xl~X t=l 

We also denote TV(f, (0) as TV(f). 

Theorem 4.1 .if L([a, w], x) = I(g(a, x) + wT h(a, x)), where TV(f) < 00 and 1 is 
Lipschitz with parameter),. Assume also that w is a d-dimensional vector and Ilwllq :s; c, 
then VEl, E2 > 0, and n > 2(d + 1): 

Iog2 Nr (L, E1 + E2, n) < (d + 1) log2[den max(l TV(f) J, 1)] + log2 Nr([g , h], E2h, n) , - + 1 2E1 

where the metric o/[g, h) is defined as Ig1 - g21 + cllh1 - h211p (l/p + l/q = 1). 

Example 4.1 Consider classification by hyperplane: L( w, x) = J( wT x < 0) where J is 
the set indicator function. Let L' ( w, x) = 10 ( wT x) be another loss function where 

{
1 z < 0 

lo(z) = 1 - z z E [0 , 1] . 

o z > 1 

Instead of using ERM for estimating parameter that minimizes the risk of L , consider the 
scheme of minimize empirical risk associated with L', under the assumption that II x 112 :s; b 
and constraint that JJwl12 :s; a. Denote the estimated parameter by wn . It follows from the 
covering number bounds and Theorem 2.1 that with probability of at least 1 - 1]: 

n 1 / 2ab In( nab + 2) + In 1.. 
________ --'-'7 ). 

n 

If we apply a slight generalization of Theorem 2.2 and the covering number bound of 
Theorem 3.4, then with probability of at least 1 - T/: 

1 a2b2 1 
ExJ(w~ x ~ 0) :s; EXfJ(w~ x :s; 2)') + O( -(-2 In(abh + 2) + In n + In -)) 

n )' T/ 

for all)' E (0,1]. 0 

Bounds given in this paper can be applied to show that under appropriate regularization 
conditions and assumptions on the data, methods based on (1) lead to generalization per­
formances of the form 0(1/ .jn), where 0 symbol (which is independent of d) is used to 
indicate that the hidden constant may include a polynomial dependency on Iog( n). It is 
also important to note that in certain cases, ,\ will not appear (or it has a small influence on 
the convergence) in the constant of 0, as being demonstrated by the example in the next 
section. 
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5 Asymptotic analysis 

The convergence results in the previous sections are in the form of VC style convergence 
in probability, which has a combinatorial flavor. However, for problems with differen­
tiable function families involving vector parameters, it is often convenient to derive precise 
asymptotic results using the differential structure. 

Assume that the parameter a E Rm in (2) is a vector and L is a smooth function. Let 
a* denote the optimal parameter; "\1 ex denote the derivative with respect to a; and 'It( a, x) 
denote "\1 exL(a, x) . Assume that 

V = J "\1 ex'lt(a* , x) dP(x) 

U = J 'It ( a * , x) 'It ( a * , x f dP ( x) . 

Then under certain regularity conditions, the asymptotic expected generalization error is 
given by 

1 
E R(aerm ) = R(a*) + 2n tr(V-1U). 

More generally, for any evaluation function h( a) such that "\1 h( a*) = 0: 
1 

E h(aerm ) I=::j h(a*) + -tr(V- 1"\12h· V-1U), 
2n 

(6) 

(7) 

where "\1 2 h is the Hessian matrix of hat a*. Note that this approach assumes that the op­
timal solution is unique. These results are exact asymptotically and provide better bounds 
than those from the standard PAC analysis. 

Example 5.1 We would like to study a form of the support vector machine: Consider 
L(a, x) = f(aT x) + ~Aa2 , 

z < 1 
z > 1 . 

Because of the discontinuity in the derivative of f , the asymptotic formula may not hold. 
However, if we make an assumption on the smoothness of the distribution x, then the 
expectation of the derivative over x can still be smooth. In this case, the smoothness of 
f itself is not crucial. Furthermore, in a separate report. we shall illustrate that similar 
small sample bounds without any assumption on the smoothness of the distribution can be 
obtained by using techniques related to asymptotic analysis. 

Consider the optimal parameter a* and letS = {x : a*Tx::; 1}. Note that Aa* = ExEsx, 
and U = EXES(X - ExEsx)(x - EXEsxf. Assume that 3')' > 0 S.t. P(a*T x ::; ')') = 0, 
then V = AI + B where B is a positive semi-definite matrix. It follows that 

E x 2 
tr(V-1U) ::; tr(U)jA ::; EXES *T Ila*I I ~::; sup Ilxll~ l la*ll~j')'. 

xESa X 

Now, consider an obtained from observations Xl = [Xl, '" ,xn ] by minimizing empirical 
risk associated with loss function L( a, x), then 

ExL(aemp , x) ::; inf ExL(a, x) + -21 sup I lx l l~lla*ll~ 
ex ')'n 

asymptotically. Let A --+ 0, this scheme becomes the optimal separating hyperplane [16]. 
This asymptotic bound is better than typical PAC bounds with fixed A. 0 

Note that although the bound obtained in the above example is very similar to the mistake 
bound for the perceptron online update algorithm, we may in practice obtain much better 
estimates from (6) by plugging in the empirical data. 
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