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Abstract 
In order to to compare learning algorithms, experimental results reported 
in the machine learning litterature often use statistical tests of signifi­
cance. Unfortunately, most of these tests do not take into account the 
variability due to the choice of training set. We perform a theoretical 
investigation of the variance of the cross-validation estimate of the gen­
eralization error that takes into account the variability due to the choice 
of training sets. This allows us to propose two new ways to estimate 
this variance. We show, via simulations, that these new statistics perform 
well relative to the statistics considered by Dietterich (Dietterich, 1998). 

1 Introduction 

When applying a learning algorithm (or comparing several algorithms), one is typically 
interested in estimating its generalization error. Its point estimation is rather trivial through 
cross-validation. Providing a variance estimate of that estimation, so that hypothesis test­
ing and/or confidence intervals are possible, is more difficult, especially, as pointed out in 
(Hinton et aI., 1995), if one wants to take into account the variability due to the choice of 
the training sets (Breiman, 1996). A notable effort in that direction is Dietterich's work (Di­
etterich, 1998). Careful investigation of the variance to be estimated allows us to provide 
new variance estimates, which tum out to perform well. 

Let us first layout the framework in which we shall work. We assume that data are avail­
able in the form Zjl = {Z 1, ... , Zn}. For example, in the case of supervised learning, 
Zi = (Xi,}Ii) E Z ~ RP+q, where p and q denote the dimensions of the X/s (inputs) 
and the }Ii 's (outputs). We also assume that the Zi'S are independent with Zi rv P(Z) . 
Let £(D; Z), where D represents a subset of size nl ::; n taken from Zjl, be a function 
Znl X Z -t R For instance, this function could be the loss incurred by the decision 
that a learning algorithm trained on D makes on a new example Z. We are interested in 
estimating nJ.l. == E[£(Zjl; Zn+1)] where Zn+1 rv P(Z) is independent of Zjl. Subscript 
n stands for the size of the training set (Zjl here). The above expectation is taken over Zjl 
and Zn+1, meaning that we are interested in the performance of an algorithm rather than 
the performance of the specific decision function it yields on the data at hand. According to 
Dietterich's taxonomy (Dietterich, 1998), we deal with problems of type 5 through 8, (eval­
uating learning algorithms) rather then type 1 through 4 (evaluating decision functions). We 
call nJ.l. the generalization error even though it can also represent an error difference: 

• Generalization error 
We may take 

£(D; Z) = £(D; (X, Y)) = Q(F(D)(X), Y), (1) 
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where F(D) (F(D) : ]RP ~ ]Rq) is the decision function obtained when training an 
algorithm on D, and Q is a loss function measuring the inaccuracy of a decision. For 
instance, we could have Q(f), y) = I[f) 1= y], where I[ ] is the indicator function, for 
classification problems and Q(f), y) =11 f) - y 11 2 , where is II . II is the Euclidean norm, for 
"regression" problems. In that case nJ.L is what most people call the generalization error. 

• Comparison of generalization errors 
Sometimes, we are not interested in the performance of algorithms per se, but instead in 
how two algorithms compare with each other. In that case we may want to consider 

.cCDi Z) = .c(Di (X, Y)) = Q(FA(D)CX), Y) - Q(FB(D)(X), Y), (2) 

where FA(D) and FB(D) are decision functions obtained when training two algorithms 
(A and B) on D, and Q is a loss function. In this case nJ.L would be a difference of 
generalization errors as outlined in the previous example. 

The generalization error is often estimated via some form of cross-validation. Since there 
are various versions of the latter, we layout the specific form we use in this paper. 

• Let Sj be a random set of nl distinct integers from {I, ... , n }(nl < n). Here nl 
represents the size of the training set and we shall let n2 = n - nl be the size of the test 
set. 

• Let SI, ... SJ be independent such random sets, and let Sj = {I, ... , n} \ Sj denote the 
complement of Sj. 

• Let Z Sj = {Zi Ii E Sj} be the training set obtained by subsampling Zr according to the 
random index set Sj. The corresponding test set is ZSj = {Zili E Sj}. 

• Let L(j, i) = .c(Zs;; Zi). According to (1), this could be the error an algorithm trained 
on the training set ZSj makes on example Zi. According to (2), this could be the difference 
of such errors for two different algorithms. 

• Let (1,j = k 2:~=1 L(j, i{) where i{, ... ,i'k are randomly and independently drawn 
from Sj. Here we draw K examples from the test set ZS'j with replacement and compute 
the average error committed. The notation does not convey the fact that {1,j depends on K, 
nl and n2 . 

• Let {1,j = limK ..... oo (1,j = ';2 2:iES~ L(j, i) denote what {1,j becomes as K increases 
J 

without bounds. Indeed, when sampling infinitely often from ZS'j' each Zi (i E Sj) is 
chosen with relative frequency .l.., yielding the usual "average test error". The use of K is 

n2 

just a mathematical device to make the test examples sampled independently from Sj. 

Then the cross-validation estimate of the generalization error considered in this paper is 
J 

n2 ~ K _ I '""' ~ 
nl J.LJ - J L.J J.Lj. 

j=1 

We note that this an unbiased estimator of nlJ.L = E[.c{Zfl, Zn+r)] (not the same as nJ.L). 

This paper is about the estimation of the variance of ~~ {1,~. We first study theoretically 
this variance in section 2, leading to two new variance estimators developped in section 3. 
Section 4 shows part of a simulation study we performed to see how the proposed statistics 
behave compared to statistics already in use. 

2 Analysis of Var[ ~~itr] 
Here we study Var[ ~~ {1,~]. This is important to understand why some inference proce­
dures about nl J.L presently in use are inadequate, as we shall underline in section 4. This 
investigation also enables us to develop estimators of Var[ ~~ {1,~] in section 3. Before we 
proceed, we state the following useful lemma, proved in (Nadeau and Bengio, 1999). 
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Lemma 1 Let U 1, ... , Uk be random variables with common mean (3, common variance 
6 and Cov[Ui , Uj] = "I, Vi '# j. Let1r = J be the correlation between Ui and Uj (i '# j). 
Let U = k- 1 2::=1 Ui and 8b = k~1 2::=1 (Ui - U)2 be the sample mean and sample 

variance respectively. Then E[8b] = 6 - "I and Var[U] = "I + (6~'Y) = 6 (11" + lk1l') . 

To study Var[ ~i j1,~] we need to define the following covariances. 

• Let lio = liO(nl) = Var[L(j, i)] when i is randomly drawn from 8J. 

• Let lil = lil (nl, n2) = Cov[L(j, i), L(j, i')] for i and i' randomly and indepen­
dently drawn from 8j. 

• Let li2 = liZ(nl, n2) = Cov[L(j, i), L(j', i')], with j '# j', i and i' randomly and 
independently drawn from 8j and 8jl respectively. 

• Let li3 = li3(nl) = Cov[L(j, i), L(j, i')] for i, i' E 8j and i '# i'. This is not the 
same as lil. In fact, it may be shown that . 

C [L( ") L(' ")] - lio + (nz - 1)li3 _ + lio - li3 (3) lil OV), z, ), z - - li3 . 
nz nz nz 

Let us look at the mean and variance of j1,j and ~i j1,~. Concerning expectations, we 
obviously have E[j1,j] = n1f.£ and thus E[ ~ij1,~] = n1f.£. From Lemma 1, we have 
Var[j1,j] = lil + O'°KO'I which implies 

Var[j1,j] = Var[ lim j1,j] = lim Var[j1,j] = lil. 
K-too K-too 

It can also be shown that Cov[j1,j, j1,j'] = liZ, j '# j', and therefore (using Lemma 1) 
TT [~] + 0'0-0'1 

TT [n2 ~K] _ var f.£j - liZ _ lil K - liZ (4) 
var n1f.£J -liz+ J -liZ+ J . 

We shall often encounter liO, lil, liZ, li3 in the future, so some knowledge about those quan­
tities is valuable. Here's what we can say about them. 

Proposition 1 For given nl and n2, we have 0 ~ liz ~ lil ~ lio and 0 ~ li3 ~ lil. 
Proof See (Nadeau and Bengio, 1999). 

A natural question about the estimator ~i j1,~ is how nl, nz, K and J affect its variance. 

Proposition 2 The variance of ~i j1,~ is non-increasing in J, K and nz. 

Proof See (Nadeau and Bengio, 1999). 

Clearly, increasing K leads to smaller variance because the noise introduced by sampling 
with replacement from the test set disappears when this is done over and over again. Also, 
averaging over many trainltest (increasing J) improves the estimation of nl f.£. Finally, all 
things equal elsewhere (nl fixed among other things), the larger the size of the test sets, the 
better the estimation of nl f.£. 

The behavior of Var[ ~i j1,~] with respect to nl is unclear, but we conjecture that in most 
situations it should decrease in nl. Our argument goes like this. The variability in ~i j1,~ 
comes from two sources: sampling decision rules (training process) and sampling testing 
examples. Holding n2, J and K fixed freezes the second source of variation as it solely de­
pends on those three quantities, not nl. The problem to solve becomes: how does nl affect 
the first source of variation? It is not unreasonable to say that the decision function yielded 
by a learning algorithm is less variable when the training set is large. We conclude that the 
first source of variation, and thus the total variation (that is Var[ ~ij1,~]) is decreasing in 
nl. We advocate the use of the estimator 

(5) 
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as it is easier to compute and has smaller variance than ~~it} (J, nl, n2 held constant). 

Var[ n2 11 00 ] = lim Var[ n2 rl.K] = (72 + (71 - (72 - (7 (p + 1 - p) (6) 
nl,-J K-+oo nl,-J J - 1 -J-' 

where P - ~ - Corr[ll.oo r/OO] - 111 - '-j , '-j' . 

3 Estimation of Var[ ~~JtJ] 
We are interested in estimating ~~(7J == Var[ ~~ it:f] where ~~ it:f is as defined in (5). We 
provide two different estimators of Var[ ~~ it:f]. The first is simple but may have a positive 
or negative bias for the actual variance. The second is meant to be conservative, that is, 
if our conjecture of the previous section is correct, its expected value exceeds the actual 
variance. 

1st Method: Corrected Resampled t-Test. Let us recall that ~~ it:f = J 'Ef=1 itj . Let 
jj2 be the sample variance of the itj's. According to Lemma 1, 

I-p ( I-P) (71 (p+!=£) 
E[jj21=(71(1-p)= !=£(71 p+~ = 1. ~ 

P + J J + I-p 

Var[ ~~it:f] 
l+--L ' J I-p 

(7) 

so that (J + G) jj2 is an unbiased estimator of Var[ ~~ iL:f]. The only problem is 

that p = p(nl,n2) = :~t~:::~~, the correlation between the itj's, is unknown and 
difficult to estimate. We use a naive surrogate for p as follows. Let us recall that 
iLj = :2 'EiES~ £(ZSj; Zi). For the purpose of building our estimator, let us make the , 
approximation that £(ZSj; Zi) depends only on Zi and nl. Then it is not hard to show (see 
(Nadeau and Bengio, 1999)) that the correlation between the itj's becomes nl~n2' There-

fore our first estimator of Var[~~iL:fl is (J + l~~o) jj2 where Po = po(nl,n2) = nl~n2' 
that is (J + ~ ) jj2. This will tend to overestimate or underestimate Var[ ~~ iL:f] accord­

ing to whether Po > p or Po < p. Note that this first method basically does not require 
any more computations than that already performed to estimate generalization error by 
cross-validation. 

2nd Method: Conservative Z. Our second method aims at overestimating Var[ ~~ iL:f] 
which will lead to conservative inference, that is tests of hypothesis with actual size less 
than the nominal size. This is important because techniques currently in use have the 
opposite defect, that is they tend to be liberal (tests with actual size exceeding the nominal 
size), which is typically regarded as less desirable than conservative tests. 

Estimating ~~ (7J unbiasedly is not trivial as hinted above. However we may estimate 
unbiasedly nn? (7J = Var[ nn? it:fl where n~ = L!!2 J - n2 < nl. Let n? uJ be the unbiased 

1 1 n 1 

estimator, developed below, of the above variance. We argued in the previous section that 
Var[ ~~ it:fl ~ Var[ ~~ iL:fl. Therefore ~;uJ will tend to overestimate ~~(7J, that is 
E[ n2a-2] = n2(72 > n2(72 n; J n; J - nl J' 

Here's how we may estimate ~? (7J without bias. For simplicity, assume that n is even. 
1 

We have to randomly split our data Zr into two distinct data sets, Dl and D1, of size ~ 
each. Let iL(1) be the statistic of interest ( ~; iL:f) computed on D1 . This involves, among 

other things, drawing J train/test subsets from DI . Let iL(l) be the statistic computed on 

D1· Then iL(l) and iL(l) are independent since Dl and Dl are independent data sets, so 

h ( A it(I )+it(1))2 (AC it(!)+it(I))2 I(A AC)2' b' ed . t at /-L(l) - 2 + J.L(I) - 2 = 2" /-L(l) - /-L(l) IS an un las estImate 
of ~?(7J. This splitting process may be repeated M times. This yields Dm and D~, with 

1 
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Dm U D~ = zf, Dm n D~ = 0 for m = 1, ... , M. Each split yields a pair (it(m) , it(m») 
that is such that ~(it(m) - it(m»)2 is unbiased for ~~U}. This allows us to use the following 

unbiased estimator of ~? U}: 
1 

M 
n2 ~ 2 _ 1 ""' (~ ~ c )2 
n~ U J - 2M L..J J-t(m) - J-t(m) . 

m=1 

(8) 

Note that, according to Lemma 1, Var[ ~~oj] = t Var[(it(m) - it(m»)2] (r + IMr) with 

r = Corr[(it(i) - it(i»)2, (it(j) - it(j»)2] for i i- j. Simulations suggest that r is usually 

close to 0, so that the above variance decreases roughly like k for M up to 20, say. The 
second method is therefore a bit more computation intensive, since requires to perform 
cross-validation M times, but it is expected to be conservative. 

4 Simulation study 
We consider five different test statistics for the hypothesis Ho : niJ-t = J-to. The first three 
are methods already in use in the machine learning community, the last two are the new 
methods we put forward. They all have the following form 

reject Ho if I it ~J-to I > c. (9) 

Table 1 describes what they are 1. We performed a simulation study to inves­
tigate the size (probability of rejecting the null hypothesis when it is true) and 
the power (probability of rejecting the null hypothesis when it is false) of the 
five test statistics shown in Table 1. We consider the problem of estimating gen­
eralization errors in the Letter Recognition classification problem (available from 
www. ics. uci . edu/pub/machine-learning-databases). The learning algo­
rithms are 

1. Classification tree 
We used the function tree in Splus version 4.5 for Windows. The default argu­
ments were used and no pruning was performed. The function predict with option 
type="class" was used to retrieve the decision function of the tree: FA (Zs)(X). 
Here the classification loss function LAU,i) = I[FA(Zsj)(Xi ) i- Yi ] is equal 
to 1 whenever this algorithm misclassifies example i when the training set is Sj; 
otherwise it is O. 

2. First nearest neighbor 
We apply the first nearest neighbor rule with a distorted distance metric to pun 
down the performance of this algorithm to the level of the classification tree (as 
in (Dietterich, 1998». We have LBU, i) equal to 1 whenever this algorithm mis­
classifies example i when the training set is Sj; otherwise it is O. 

In addition to inference about the generalization errors ni J-tA and ni J-tB associated with 
those two algorithms, we also consider inference about niJ-tA-B = niJ-tA - niJ-tB = 
E[LA-B(j,i)] whereLA_B(j,i) = LAU,i) - LB(j,i). 

We sample, without replacement, 300 examples from the 20000 examples available in the 
Letter Recognition data base. Repeating this 500 times, we obtain 500 sets of data of the 
form {ZI,"" Z300}. Once a data set zloO = {ZI,'" Z300} has been generated, we may 

lWhen comparing two classifiers, (Nadeau and Bengio, 1999) show that the t-test is closely re­
lated to McNemar's test described in (Dietterich, 1998). The 5 x 2 cv procedure was developed in 
(Dietterich, 1998) with solely the comparison of classifiers in mind but may trivially be extended to 
other problems as shown in (Nadeau and Bengio, 1999). 
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II Name II c 

" t-test (McNemar) n2 AOO 
nl/-Ll ~2 SV(L(I, i)) t n2 - 1,1-ar/2 n2IT3+~ITO-IT3) > 1 

ITn -IT3 
resampled t n2 AOO 

nl/-LJ yO-:.l t J - 1,1-ar/2 I+J~ > 1 
Dietterich's 5 x 2 cv n(2 AOO 

n/2/-Ll see (Dietterich, 1998) tS,1-ar/2 ? 

1: conservative Z n2 AOO n2 A2 
Zl-ar/2 ~~IT? < 1 nl/-LJ n'UJ 

1 n,uJ 

2: corr. resampled t n2 AOO (!. + ~) 0-2 tJ-l,1-ar/2 
l+JE 

nl /-L J J nl l+J~ 

Table 1: Description of five test statistics in relation to the rejection criteria shown in (9). 
Zp and h,p refer to the quantile p of the N(O, 1) and Student tk distribution respectively. 
0-2 is as defined above (7) and SV (L(I, i)) is the sample variance of the L(I, i)'s involved 

in ~i {l{'. The ~t~~l ratio (which comes from proper application of Lemma 1, except for 
Dietterich's 5 x 2 cv and the Conservative Z) indicates if a test will tend to be conservative 
(ratio less than 1) or liberal (ratio greater than 1). 

perform hypothesis testing based on the statistics shown in Table 1. A difficulty arises 
however. For a given n (n = 300 here), those methods don't aim at inference for the same 
generalization error. For instance, Dietterich's 5 x 2 cv test aims at n/2/-L, while the others 
aim at nl/-L where nl would usually be different for different methods (e.g. nl = 23n for 
the t test statistic, and nl = ~~ for the resampled t test statistic, for instance). In order 
to compare the different techniques, for a given n, we shall always aim at n/2/-L, i.e. use 
nl = ¥-. However, for statistics involving ~ip.r with J > 1, normal usage would call for 
nl to be 5 or 10 times larger than n2, not nl = n2 = ¥-. Therefore, for those statistics, we 

also use nl = ¥- and n2 = l~ so that ~ = 5. To obtain ~~;o p.r we simply throw out 40% 
of the data. For the conservative Z, we do the variance calculation as we would normally 

do (n2 = l~ for instance) to obtain ~i2-n2a-J = ;~~~a-J. However, in the numerator we 

b h n/2AOO d n2 AOO n/lOAoo' d f n2 AOO I' db compute ot n/2/-LJ an n/2/-LJ n/2 /-LJ mstea 0 n-n2/-LJ' as exp rune a ove. 

Note that the rationale that led to the conservative Z statistics is maintained, that is ;~~~a-J 
. b h TT [n/lOAOO] d TT [n/2A OO] E [n/lOA2] > TT [n/lOAOO] > overestimates ot var n/2 /-LJ an var n/2/-LJ: 2n/su J _ var n/2 /-LJ 

TT [n/2 A 00] 
var n/2/-LJ . 

Figure 1 shows the estimated power of different statistics when we are interested in /-LA and 
/-LA-B. We estimate powers by computing the proportion of rejections of Ho . We see that 
tests based on the t-test or resampled t-test are liberal, they reject the null hypothesis with 
probability greater than the prescribed a = 0.1, when the null hypothesis is true. The other 
tests appear to have sizes that are either not significantly larger the 10% or barely so. Note 
that Dietterich's 5 x 2cv is not very powerful (note that its curve has the lowest power on 
the extreme values of muo). To make a fair comparison of power between two curves, one 
should mentally align the size (bottom of the curve) of these two curves. Indeed, even the 
resampled t-test and the conservative Z that throw out 40% of the data are more powerful. 
That is of course due to the fact that the 5 x 2 cv method uses J = 1 instead of J = 15. 

This is just a glimpse of a much larger simulation study. When studying the corrected 
resampled t-test and the conservative Z in their natural habitat (nl = ~9 and n2 = l~)' we 
see that they are usually either right on the money in term of size, or slIghtly conservative. 
Their powers appear equivalent. The simulations were performed with J up to 25 and M 
up to 20. We found that taking J greater than 15 did not improve much the power of the 
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Figure 1: Powers of the tests about Ho : /-LA = /-Lo (left panel) and Ho : /-LA-B = /-Lo 
(right panel) at level a = 0.1 for varying /-Lo. The dotted vertical lines correspond to the 
95% confidence interval for the actual/-LA or /-LA-B. therefore that is where the actual size 
of the tests may be read. The solid horizontal line displays the nominal size of the tests. 
i.e. 10%. Estimated probabilities of rejection laying above the dotted horizontal line are 
significatively greater than 10% (at significance level 5%). Solid curves either correspond 
to the resampled t-test or the corrected resampled t-test. The resampled t-test is the one that 
has ridiculously high size. Curves with circled points are the versions of the ordinary and 
corrected resampled t-test and conservative Z with 40% of the data thrown away. Where it 
matters J = 15. M = 10 were used. 

statistics. Taking M = 20 instead of M = 10 does not lead to any noticeable difference 
in the distribution of the conservative Z. Taking M = 5 makes the statistic slightly less 
conservative. See (Nadeau and Bengio. 1999) for further details. 

5 Conclusion 
This paper addresses a very important practical issue in the empirical validation of new 
machine learning algorithms: how to decide whether one algorithm is significantly better 
than another one. We argue that it is important to take into account the variability due to 
the choice of training set. (Dietterich. 1998) had already proposed a statistic for this pur­
pose. We have constructed two new variance estimates of the cross-validation estimator 
of the generalization error. These enable one to construct tests of hypothesis and confi­
dence intervals that are seldom liberal. Furthermore. tests based on these have powers that 
are unmatched by any known techniques with comparable size. One of them (corrected 
resampled t-test) can be computed without any additional cost to the usual K-fold cross­
validation estimates. The other one (conservative Z) requires M times more computation. 
where we found sufficiently good values of M to be between 5 and 10. 
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