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Abstract 

I present a simple variation of importance sampling that explicitly search­
es for important regions in the target distribution. I prove that the tech­
nique yields unbiased estimates, and show empirically it can reduce the 
variance of standard Monte Carlo estimators. This is achieved by con­
centrating samples in more significant regions of the sample space. 

1 Introduction 

It is well known that general inference and learning with graphical models is computa­
tionally hard [1] and it is therefore necessary to consider restricted architectures [13], or 
approximate algorithms to perform these tasks [3, 7]. Among the most convenient and 
successful techniques are stochastic methods which are guaranteed to converge to a correct 
solution in the limit oflarge samples [10, 11, 12, 15]. These methods can be easily applied 
to complex inference problems that overwhelm deterministic approaches. 

The family of stochastic inference methods can be grouped into the independent Monte 
Carlo methods (importance sampling and rejection sampling [4, 10, 14]) and the dependent 
Markov Chain Monte Carlo (MCMC) methods (Gibbs sampling, Metropolis sampling, and 
"hybrid" Monte Carlo) [5, 10, 11, 15]. The goal of all these methods is to simulate drawing 
a random sample from a target distribution P (x) (generally defined by a Bayesian network 
or graphical model) that is difficult to sample from directly. 

This paper investigates a simple modification of importance sampling that demonstrates 
some advantages over independent and dependent-Markov-chain methods. The idea is to 
explicitly search for important regions in a target distribution P when sampling from a 
simpler proposal distribution Q. Some MCMC methods, such as Metropolis and "hybrid" 
Monte Carlo, attempt to do something like this by biasing a local random search towards 
higher probability regions, while preserving the asymptotic "fair sampling" properties of 
the exploration [11, 12]. Here I investigate a simple direct approach where one draws 
points from a proposal distribution Q but then explicitly searches in P to find points from 
significant regions. The main challenge is to maintain correctness (i.e., unbiased ness) of 
the resulting procedure, which we achieve by independently sampling search subsequences 
and then weighting the sample points so that their expected weight under the proposal 
distribution Q matches their true probability under the target P. 
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Importance sampling 
• Draw Xl , ... , X n independently from Q. 
• Weight each point Xi by W(Xi) = ~I::l. 
• For a random variable, f, estimate Ep (.,) f(x) 

A I ",n 
by f = n L.Ji=I f(Xi)W(Xi). 

"Indirect" importance sampling 
• Draw Xl, ... ,xn independently from Q. 
.Weighteachpointxibyu(xi) = (3~~i/. 
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• For a random variable, f, estimate Ep(.,)f(x) 
A ",n ",n 

by f = L.Ji=I f(Xi)U(Xi)/ L.Ji=I U(Xi). 

Figure 1: Regular and "indirect" importance sampling procedures 

2 Generalized importance sampling 

Many inference problems in graphical models can be cast as determining the expected 
value of a random variable of interest, f, given observations drawn according to a target 
distribution P. That is, we are interested in computing the expectation Ep(x) f(x). Usually 
the random variable f is simple, like the indicator of some event, but the distribution P 
is generally not in a form that we can sample from efficiently. Importance sampling is a 
useful technique for estimating Ep(x) f (x) in these cases. The idea is to draw independent 
points xl, .. " Xn from a simpler "proposal" distribution Q, but then weight these points 
by w(x) = P(x)/Q(x) to obtain a "fair" representation of P. Assuming that we can 
efficiently evaluate P(x) at each point, the weighted sample can be used to estimate de­
sired expectations (Figure 1). The correctness (i.e., unbiasedness) of this procedure is easy 
to establish, since the expected weighted value of f under Q is just Eq(x)f(x)w(x) = 

EXEX [f(x)w(x)] Q(x) = Ex EX [f(x)~t:n Q(x) = EXEX f(x)P(x) = Ep(x)f(x), 

This technique can be implemented using "indirect" weights u( x) = f3P (x) / Q ( x) and an 
alternative estimator (Figure 1) that only requires us to compute a fixed multiple of P (x). 
This preserves asymptotic correctness because ~ E7=1 f(xdu(xd and ~ E?=l U(Xi) con­
verge to f3Ep(x)f(x) and f3 respectively, which yields j -t Ep(x)f(x) (generally [4]). It 
will always be possible to apply this extended approach below, but we drop it for now. 

Importance sampling is an effective estimation technique when Q approximates P over 
most of the domain, but it fails when Q misses high probability regions of P and system­
atically yields samples with small weights. In this case, the reSUlting estimator will have 
high variance because the sample will almost always contain unrepresentative points but is 
sometimes dominated by a few high weight points. To overcome this problem it is criti­
cal to obtain data points from the important regions of P. Our goal is to avoid generating 
systematically under-weight samples by explicitly searching for significant regions in the 
target distribution P. To do this, and maintain the unbiased ness of the resulting procedure, 
we develop a series of extensions to importance sampling that are each provably correct. 

The first extension is to consider sampling blocks of points instead of just individual points. 
Let B be a partition of X into finite blocks B, where UBE8 B = X, B n B' = 0, 
and each B is finite. (Note that B can be infinite.) The "block" sampling procedure 
(Figure 2) draws independent blocks of points to construct the final sample, but then 
weights points by their target probability P(x) divided by the total block probability 
Q (B (x)), For discrete spaces it is easy to verify that this procedure yields unbiased esti-

mates, since Eq(x) [EXjEB(X) f(xj)w(Xj)] = EXEX [L:XjEB(X) f(xj)w(Xj)] Q(x) = 
EBE8 EXiEB [EXjEB f(xj)w(Xj)] Q(Xi) = EBE8 [EXjEB f(xj)w(Xj)] Q(B) = 

EBE8 [EXjEB f(xj) ~«~n Q(B) = EBE8 [EXjEB f(xj )P(Xj)] = L:xEx f(x)P(x). 
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"Block" importance sampling 
• Draw Xl , ... , Xn independently from Q. 
• For Xi, recover block Bi = {Xi,l, ... ,Xi,bJ. 
• Create a large sample out of the blocks 
Xl ,1, ... , Xl ,bl , X2 ,1 , ... , X2,b2' ••• , Xn,l, ... , Xn ,b" . 

• Weighteachx ' ' byw(x.') = P(zi,j) 
I , } I,} ",oi Q(z,,)' 

L.Jj=l ' ,J 

• For a random variable, f, estimate Ep(z) f(x) 

by j = ~ 2:~=1 2:~~1 f(Xi ,j)W(Xi,j) . 

D. Schuurmans 

"Sliding window" importance sampling 
• Draw Xl, ... , xn independently from Q. 
• For Xi , recover block Bi , and let Xi ,l = Xi : 
- Get Xi,l 'S successors Xi ,l, Xi ,2, ... , Xi ,m 

by climbing up m - 1 steps from Xi ,l . 
- Get predecessorsxi,_m+l" ... ,Xi,-l , Xi ,O 

by climbing down m - 1 steps from Xi,l . 
- Weight W(Xi ,j)= P(Xi ,i)/2:!=i_m+lQ (x; ,k) 

• Create final sample from successor points 
XI ,I, ... , Xl ,m, X2,1 , ••. , X2 ,m, •.. , Xn ,l, ... , Xn ,m. 

• For a random variable, f, estimate Ep(z) f(x) 
A 1 ",n ",m 

by f = n 6i=1 6j=1 f(Xi,j)W(Xi,j) . 

Figure 2: "Block" and "sliding window" importance sampling procedures 

Crucially, this argument does not depend on how the partition of X is chosen. In fact, we 
could fix any partition, even one that depended on the target distribution P, and still obtain 
an unbiased procedure (so long as the partition remains fixed) . Intuitively, this works be­
cause blocks are drawn independently from Q and the weighting scheme still produces a 
"fair" representation of P . (Note that the results presented in this paper can all be extended 
to continuous spaces under mild technical restrictions. However, for the purposes of clarity 
we will restrict the technical presentation in this paper to the discrete case.) 

The second extension is to allow countably infinite blocks that each have a discrete to­
tal order . . . < Xi -1 < Xi < Xi +1 < .. . defined on their elements. This order could 
reflect the relative probability of Xi and X j under P, but for now we just consider it 
to be an arbitrary discrete order. To cope with blocks of unbounded length, we em­
ploy a "sliding window" sampling procedure that selects a contiguous sub-block of size 
m from within a larger selected block (Figure 2). This procedure builds each indepen­
dent subsample by choosing a random point Xl from the proposal distribution Q, de­
termining its containing block B(xt), and then climbing up m - 1 steps to obtain the 
successors Xl, X2, ••. , Xm , and climbing down m - 1 steps to obtain the predecessors 
X- m +1 , ... , X-I, Xo . The successor points (including Xl) appear in the final sample, but 
the predecessors are only used to determine the weights of the sample points. Weights 
are determined by the target probability P (x) divided by the probability that the point 
X appears in a random reconstruction under Q. This too yields an unbiased estimator 

sinceEQ(x) [2:~lf(xj)w(Xj)] = 2:XtEX [2:~;~-1 f(xj)2:~=j~~:: Q(Xk)] Q(Xl ) = 

'" 2: 2:l +m - 1 f(xj)P(Xj)Q(xd - '" 2: 2:j f(xj)P(Xj)Q(xt} -
6BEB x t EB j=l "'J. Q(Xk) - 6BEB Xj EB l=j-m+1 "'J . Q(Xk) -

6k=J-m+l 6k=J-m+l 

2:BEB2:x j EBf(xj )P(Xj )Ei::=::: ~;::~ = 2:BEB2:xjEBf(xj )P(Xj)= 2:xEx f(x)P(x). 

(The middle line breaks the sum into disjoint blocks and then reorders the sum so that in­
stead of first choosing the start point Xl and then XL'S successors Xl, .. • , Xl+m-l. we first 
choose the successor point Xj and then the start points Xj-m+1 , ... , Xj that could have led 
to Xj). Note that this derivation does not depend on the particular block partition nor on the 
particular discrete orderings, so long as they remain fixed. This means that, again, we can 
use partitions and orderings that explicitly depend on P and still obtain a correct procedure. 
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"Greedy" importance sampling (I-D) If(x)P(x)1 collision 
e Draw Xl , ... , Xn independently from Q. 
eForeachxi , letxi, l =Xi : 
- Compute successors Xi ,l, Xi ,2, ... ,Xi,m by taking 

m - 1 size € steps in the direction of increase. 
- Compute predecessors Xi,-m+l, ... ,Xi ,-l ,Xi ,O by 

taking m -1 size € steps in the direction of decrease. 
- If an improper ascent or descent occurs, x· x" 

truncate paths as shown on the upper right. 

- Weightw(xi ,j) = P(Xi ,j)/L:~=j_m+l Q(Xi ,k) . k ~ 
e Create the final sample from successor points if 6 "\, 

XI ,l, ••• , XI ,m , X'2 , I , ••• , X2 ,m , ••• ,Xn ,l, ••• , ::tn ,m-

e For a random variable, f, estimate Ep(z) f(x) 
A 1 ",n ",m 

by f = -;; L..ti=l L.Jj=l f(Xi ,j)W(Xi ,j) . merge 

Figure 3: "Greedy" importance sampling procedure; "colliding" and "merging" paths. 

3 Greedy importance sampling: I-dimensional case 

Finally, we apply the sliding window procedure to conduct an explicit search for impor­
tant regions in X. It is well known that the optimal proposal distribution for importance 
sampling isjust Q* (x) = If(x )P(x)11 EXEX If(x )P(x) 1 (which minimizes variance [2]). 
Here we apply the sliding window procedure using an order structure that is determined by 
the objective If(x )P(x )1 . The hope is to obtain reduced variance by sampling independent 
blocks of points where each block (by virtue of being constructed via an explicit search) is 
likely to contain at least one or two high weight points. That is, by capturing a moderate 
size sample of independent high weight points we intuitively expect to outperform standard 
methods that are unlikely to observe such points by chance. Our experiments below verify 
this intuition (Figure 4). 

The main technical issue is maintaining unbiasedness, which is easy to establish in the 1-
dimensional case. In the simple I-d setting, the "greedy" importance sampling procedure 
(Figure 3) first draws an initial point Xl from Q and then follows the direction of increas­
ing If(x)P(x)l, taking fixed size € steps, until either m - 1 steps have been taken or we 
encounter a critical point. A single "block" in our final sample is comprised of a complete 
sequence captured in one ascending search. To weight the sample points we account for all 
possible ways each point could appear in a subsample, which, as before, entails climbing 
down m-l steps in the descent direction (to calculate the denominators). The unbiasedness 
of the procedure then follows directly from the previous section, since greedy importance 
sampling is equivalent to sliding window importance sampling in this setting. 

The only nontrivial issue is to maintain disjoint search paths. Note that a search path must 
terminate whenever it steps from a point x· to a point x** with lower value; this indicates 
that a collision has occurred because some other path must reach x· from the "other side" 
of the critical point (Figure 3). At a collision, the largest ascent point x· must be allocated 
to a single path. A reasonable policy is to allocate x· to the path that has the lowest weight 
penultimate point (but the only critical issue is ensuring that it gets assigned to a single 
block). By ensuring that the critical point is included in only one of the two distinct search 
paths, a practical estimator can be obtained that exhibits no bias (Figure 4). 

To test the effectiveness of the greedy approach I conducted several I-dimensional experi­
ments which varied the relationship between P, Q and the random variable f (Figure 4). In 
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these experiments greedy importance sampling strongly outperformed standard methods, 
including regular importance sampling and directly sampling from the target distribution P 
(rejection sampling and Metropolis sampling were not competitive). The results not only 
verify the unbiasedness of the greedy procedure, but also show that it obtains significantly 
smaller variances across a wide range of conditions. Note that the greedy procedure actu­
ally uses m out of 2m - 1 points sampled for each block and therefore effectively uses a 
double sample. However, Figure 4 shows that the greedy approach often obtains variance 
reductions that are far greater than 2 (which corresponds to a standard deviation reduction 
of V2). 

4 Multi-dimensional case 

Of course, this technique is worthwhile only if it can be applied to multi-dimensional prob­
lems. In principle, it is straightforward to apply the greedy procedure of Section 3 to 
multi-dimensional sample spaces. The only new issue is that discrete search paths can now 
possibly "merge" as well as "collide"; see Figure 3. (Recall that paths could not merge 
in the previous case.) Therefore, instead of decomposing the domain into a collection of 
disjoint search paths, the objective If(x)P(x)1 now decomposes the domain into a forest 
of disjoint search trees. However, the same principle could be used to devise an unbiased 
estimator in this case: one could assign a weight to a sample point x that is just its target 
probability P (x) divided by the total Q-probability of the subtree of points that lead to x 
in fewer than m steps. This weighting scheme can be shown to yield an unbiased estimator 
as before. However, the resulting procedure is impractical because in an N-dimensional 
sample space a search tree will typically have a branching factor of n(N); yielding expo­
nentially large trees. Avoiding the need to exhaustively examine such trees is the critical 
issue in applying the greedy approach to multi-dimensional spaces. 

The simplest conceivable strategy is just to ignore merge events. Surprisingly, this turns 
out to work reasonably well in many circumstances. Note that merges will be a measure 
zero event in many continuous domains. In such cases one could hope to ignore merges 
and trust that the probability of "double counting" such points would remain near zero. 
I conducted simple experiments with a version of greedy importance sampling procedure 
that ignored merges. This procedure searched in the gradient ascent direction of the objec­
tive If{x)p{x)1 and heuristically inverted search steps by climbing in the gradient descent 
direction. Figures 5 and 6 show that, despite the heuristic nature of this procedure, it nev­
ertheless demonstrates credible performance on simple tasks. 

The first experiment is a simple demonstration from [12, 10] where the task is to sample 
from a bivariate Gaussian distribution P of two highly correlated random variables using a 
"weak" proposal distribution Q that is standard normal (depicted by the elliptical and circu­
lar one standard deviation contours in Figure 5 respectively). Greedy importance sampling 
once again performs very well (Figure 5); achieving unbiased estimates with lower variance 
than standard Monte Carlo estimators, including common MCMC methods. 

To conduct a more significant study, I applied the heuristic greedy method to an inference 
problem in graphical models: recovering the hidden state sequence from a dynamic proba­
bilistic model, given a sequence of observations. Here I considered a simple Kalman filter 
model which had one state variable and one observation variable per time-step, and used 
theconditionaldistributionsXtlXt_ l "-' N(Xt_l,O';), ZtlXt "" N(xt,O'~) and initial dis­
tribution Xl "-' N(O,O';) . The problem was to infer the value of the final state variable Xt 
given the observations Zl, Z2, "', Zt. Figure 6 again demonstrates that the greedy approach 
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has a strong advantage over standard importance sampling. (In fact, the greedy approach 
can be applied to "condensation" [6, 8] to obtain further improvements on this task, but 
space bounds preclude a detailed discussion.) 

Overall, these preliminary results show that despite the heuristic choices made in this sec­
tion, the greedy strategy still performs well relative to common Monte Carlo estimators, 
both in terms of bias and variance (at least on some low and moderate dimension prob­
lems). However, the heuristic nature of this procedure makes it extremely unsatisfying. In 
fact, merge points can easily make up a significant fraction of finite domains. It turns out 
that a rigorously unbiased and feasible procedure can be obtained as follows. First, take 
greedy fixed size steps in axis parallel directions (which ensures the steps can be inverted). 
Then, rather than exhaustively explore an entire predecessor tree to calculate the weights of 
a sample point, use the well known technique of Knuth [9] to sample a single path from the 
root and obtain an unbiased estimate of the total Q-probability of the tree. This procedure 
allows one to formulate an asymptotically unbiased estimator that is nevertheless feasible 
to implement. It remains important future work to investigate this approach and compare 
it to other Monte Carlo estimation methods on large dimensional problems-in particular 
hybrid Monte Carlo [11, 12]. The current results already suggest that the method could 
have benefits. 

References 

[1] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks is 
NP-hard. Artif Intell, 60: 141-153, 1993. 

[2] M. Evans. Chaining via annealing. Ann Statist, 19:382-393, 1991. 

[3] B. Frey. Graphical Models for Machine Learning and Digital Communication. MIT Press, 
Cambridge, MA, 1998. 

[4] J. Geweke. Baysian inference in econometric models using Monte Carlo integration. Econo­
metrica, 57:1317-1339, 1989. 

[5] W. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in practice. Chapman 
and Hall, 1996. 

[6] M. Isard and A. Blake. Coutour tracking by stochastic propagation of conditional density. In 
ECCV, 1996. 

[7] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for 
graphical models. In Learning in Graphical Models. Kluwer, 1998. 

[8] K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for dynamic proba­
bilistic networks. In UAl, 1995. 

[9] D. Knuth. Estimating the efficiency of backtracking algorithms. Math. Comput., 29(129): 121-
136,1975. 

[10] D. MacKay. Intro to Monte Carlo methods. In Learning in Graphical Models. Kluwer, 1998. 

[11] R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. 1993. 

[12] R. Neal. Bayesian Learning for Neural Networks . Springer, New York, 1996. 

[13] J. Pearl. Probabilistic Reasoning in Intelligence Systems. Morgan Kaufmann, 1988. 

[14] R. Shacter and M. Peot. Simulation approaches to general probabilistic inference in belief 
networks. In Uncertainty in Artificial Intelligence 5. Elsevier, 1990. 

[15] M. Tanner. Tools for statistical inference: Methods for exploration of posterior distributions 
and likelihoodfunctions. Springer, New York, 1993. 



602 D. Schuurmans 

. f ' 

._.11 

{/... . 
• . . 

Direc Greed Imprt Direc Greed 1m rt Direc Greed Imrt Direc Greed Imprt 
mean 0.779 0.781 0.777 1.038 1.044 1.032 0.258 0.208 0.209 6.024 6.028 6.033 
bias 0.001 0.001 0.003 0.002 0.003 0.008 0.049 0.000 0.001 0.001 0.004 0.009 
stdev 0.071 0.Q38 0.065 0.088 0.049 0.475 0.838 0.010 0.095 0.069 0.037 0.094 

Figure 4: I-dimensional experiments: 1000 repetitions on estimation samples of size 100. 
Problems with varying relationships between P, Q, I and II PI. 
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mean 
bias 
stdev 

Direct 
0.1884 
0.0022 

0.07 

Greedy 
0.1937 
0.0075 
0.1374 

Importance 
0.1810 
0.0052 
0.1762 

Rejection 
0.1506 
0.0356 
0.2868 

Gibbs 
0.3609 
0.1747 
0.5464 

Metropolis 
8.3609 
8.1747 
22.1212 

/ .... .. . . , 
.. 

Figure 5: 2-dimensional experiments: 500 repetitions on estimation samples of size 200. 
Pictures depict: direct, greedy importance, regular importance, and Gibbs sampling, show­
ing 1 standard deviation countours (dots are sample points, vertical lines are weights). 

Importance 
mean 5.2269 
bias 2.7731 

stdev 1.2107 

Greedy 
6.9236 
1.0764 
0.1079 

Figure 6: A 6-dimensional experiment: 500 repetitions on estimation samples of size 200. 
Estimating the value of Xt given the observations Zl, "" Zt. Pictures depict paths sampled 
by regular versus greedy importance sampling. 


