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Abstract 

In this paper we define a probabilistic computational model which 
generalizes many noisy neural network models, including the recent 
work of Maass and Sontag [5]. We identify weak ergodicjty as the 
mechanism responsible for restriction of the computational power 
of probabilistic models to definite languages, independent of the 
characteristics of the noise: whether it is discrete or analog, or if 
it depends on the input or not, and independent of whether the 
variables are discrete or continuous. We give examples of weakly 
ergodic models including noisy computational systems with noise 
depending on the current state and inputs, aggregate models, and 
computational systems which update in continuous time. 

1 Introduction 

Noisy neural networks were recently examined, e.g. in. [1,4, 5]. It was shown in [5] 
that Gaussian-like noise reduces the power of analog recurrent neural networks to 
the class of definite languages, which area strict subset of regular languages. Let 
E be an arbitrary alphabet. LeE· is called a definite language if for some integer 
r any two words coinciding on the last r symbols are either both in L or neither in 
L. The ability of a computational system to recognize only definite languages can 
be interpreted as saying that the system forgets all its input signals, except for the 
most recent ones. This property is reminiscent of human short term memory. 

"Definite probabilistic computational models" have their roots in Rabin's pioneer­
ing work on probabilistic automata [9]. He identified a condition on probabilistic 
automata with a finite state space which restricts them to definite languages. Paz 
[8] generalized Rabin's condition, applying it to automata with a countable state 
space, and calling it weak ergodicity [7, 8]. In their ground-breaking paper [5], 
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Maass and Sontag extended the principle leading to definite languages to a finite 
interconnection of continuous-valued neurons. They proved that in the presence 
of "analog noise" (e.g. Gaussian), recurrent neural networks are limited in their 
computational power to definite languages. Under a different noise model, Maass 
and Orponen [4] and Casey [1] showed that such neural networks are reduced in 
their power to regular languages. 

In this paper we generalize the condition of weak ergodicity, making it applica­
ble to numerous probabilistic computational machines. In our general probabilistic 
model, the state space can be arbitrary: it is not constrained to be a finite or 
infinite set, to be a discrete or non-discrete subset of some Euclidean space, or 
even to be a metric or topological space. The input alphabet is arbitrary as well 
(e.g., bits, rationals, reals, etc.). The stochasticity is not necessarily defined via a 
transition probability function (TPF) as in all the aforementioned probabilistic and 
noisy models, but through the more general Markov operators acting on measures. 
Our Markov Computational Systems (MCS's) include as special cases Rabin's ac­
tual probabilistic automata with cut-point [9], the quasi-definite automata by Paz 
[8], and the noisy analog neural network by Maass and Sontag [5]. Interestingly, 
our model also includes: analog dynamical systems and neural models, which have 
no underlying deterministic rule but rather update probabilistic ally by using finite 
memory; neural networks with an unbounded number of components; networks of 
variable dimension (e.g., "recruiting networks"); hybrid systems that combine dis­
crete and continuous variables; stochastic cellular automata; and stochastic coupled 
map lattices. 

We prove that all weakly ergodic Markov systems are stable, i.e. are robust with 
respect to architectural imprecisions and environmental noise. This property is de­
sirable for both biological and artificial neural networks. This robustness was known 
up to now only for the classical discrete probabilistic automata [8, 9] . To enable 
practicality and ease in deciding weak ergodicity for given systems, we provide two 
conditions on the transition probability functions under which the associated com­
putational system becomes weakly ergodic. One condition is based on a version 
of Doeblin's condition [5] while the second is motivated by the theory of scram­
bling matrices [7, 8]. In addition we construct various examples of weakly ergodic 
systems which include synchronous or asynchronous computational systems, and 
hybrid continuous and discrete time systems. 

2 Markov Computational System (MCS) 

Instead of describing various types of noisy neural network models or stochastic 
dynamical systems we define a general abstract probabilistic model. When dealing 
with systems containing inherent elements of uncertainty (e.g., noise) we abandon 
the study of individual trajectories in favor of an examination of the flow of state 
distributions. The noise models we consider are homogeneous in time, in that they 
may depend on the input, but do not depend on time. The dynamics we consider 
is defined by operators acting in the space of measures, and are called Markov 
operators [6]. In the following we define the concepts which are required for such 
an approach. 

Let E be an arbitrary alphabet and ° be an abstract state space. We assume that 
a O'-algebra B (not necessarily Borel sets) of subsets of ° is given, thus (0, B) is a 
measurable space. Let us denote by P the set of probability measures on (0, B). 
This set is called a distribution space. 

Let E be a space of finite measures on (0, B) with the total variation norm defined 
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by 
Ilpllt = 11-'1(0) = sup I-'(A) - inf I-'(A). 

AEB AEB 
(1) 

Denote by C the set of all bounded linear operators acting from £ to itself. The 
1I'lh- norm on £ induces a norm IIPlh = sUPJjE'P IIPI-'III in C. An operator P E C 
is said to be a Markov operator if for any probability measure I-' E P, the image PI-' 
is again a probability measure. For a Markov operator, IIPIII = 1. 

Definition 2.1 A Markov system is a set of Markov operators T = {Pu : u E E}. 

With any Markov system T, one can associate a probabilistic computational sys­
tem. If the probability distribution on the initial states is given by the probability 
measure Po, then the distribution of states after n computational steps on inputs 
W = Wo, WI, ... , W n , is defined as in [5, 8] 

Pwl-'o(A) = PWn •• • •• Pw1Pwol-'0. (2) 
Let A and R be two subset of P with the property of having a p-gap 

dist(A, R) = inf III-' - viii = P > 0 
JjEA,IIE'R 

(3) 

The first set is called a set of accepting distributions and the second is called a set 
of rejecting distributions. A language L E E* is said to be recognized by Markov 
computational system M = (£, A, R, E, 1-'0, T) if 

W E L {:::} Pwl-'o E A 
W rt. L, {:::} PwPo E R. 

This model of language recognition with a gap between accepting and rejecting 
spaces agrees with Rabin's model of probabilistic automata with isolated cut-point 
[9] and the model of analog probabilistic computation [4, 5]. 

An example of a Markov system is a system of operators defined by TPF on (0, B). 
Let Pu (x, A) be the probability of moving from a state x to the set of states A upon 
receiving the input signal u E E. The function Pu(x,') is a probability measure for 
all x E 0 and PuC A) is a measurable function of x for any A E B. In this case, 
Pup(A) are defined by 

(4) 

3 Weakly Ergodic MCS 

Let P E £, be a Markov operator. The real number J'(P) = 1 - ! sUPJj,I/E'P IIPp -
Pvlll is called the ergodicity coefficient of the Markov operator. We denote 
J(P) = 1 - J'(P) . It can be proven that for any two Markov operators P1 ,P2, 
J(PI P2) :S J(Pt}J(P2)' The ergodicity coefficient was introduced by Dobrushin [2] 
for the particular case of Markov operators induced by TPF P (x, A). In this special 
case J'(P) = 1- SUPx,ySUPA IP(x , A) - P(y,A)I · 

Weakly ergodic systems were introduced and studied by paz in the particular case 
of a denumerable state space 0, where Markov operators are represented by infi­
nite dimensional matrices. The following definition makes no assumption on the 
associated measurable space. 

Definition 3.1 A Markov system {Pu , U E E} is called weakly ergodic if for any 
a > 0, there is an integer r = r( a) such that for any W E E~r and any 1-', v E P, 

1 
J(Pw) = "2llPwl-' - Pwvlh :S a. (5) 
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An MeS M is called weakly ergodic if its associated Markov system {Pu , u E E} 
is weakly ergodic. • 

An MeS M is weakly ergodic if and only if there is an integer r and real number 
a < 1, such that IlPwJ.l - Pwvlh ::; a for any word w of length r. Our most general 
characterization of weak ergodicity is as follows: [11]: 

Theorem 1 An abstract MCS M is weakly ergodic if and only if there exists 
a multiplicative operator's norm II . 11** on C equivalent to the norm II . liB 
sUPP,:Ml=O} 1I1~11!1 , and such that SUPUE~ I lPu lIu ::; € for some number € < 1. • 

The next theorem connects the computational power of weakly ergodic MeS's with 
the class of definite languages, generalizing the results by Rabin [9], Paz [8, p. 175], 
and Maass and Sontag [5]. 

Theorem 2 Let M be a weakly ergodic MCS. If a language L can be recognized by 
M, then it is definite. • 

4 The Stability Theorem of Weakly Ergodic MCS 

An important issue for any computational system is whether the machine is robust 
with respect to small perturbations of the system's parameters or under some ex­
ternal noise. The stability of language recognition by weakly ergodic MeS's under 
perturbations of their Markov operators was previously considered by Rabin [9] and 
Paz [7,8]. We next state a general version ofthe stability theorem that is applicable 
to our wide notion of weakly ergodic systems. 

We first define two MeS's M and M to be similar if they share the same measur­
able space (0,8), alphabet E, and sets A and 'fl, and if they differ only by their 
associated Markov operators. 

Theorem 3 Let M and M be two similar MCS's such that the first is weakly 
ergodic. Then there is a > 0, such that if IlPu - 1\lh ::; a for all u E E, then 
the second is also weakly ergodic. Moreover, these two MCS's recognize exactly the 
same class of languages. • 

Corollary 3.1 Let M and M be two similar MCS's. Suppose that the first is 
weakly ergodic. Then there exists f3 > 0, such that ifsuPAEB IPu(x, A) -.Pu(x, A)I ::; 
f3 for all u E E, x E 0, the second is also weakly ergodic. Moreover, these two MCS's 
recognize exactly the same class of languages. • 

A mathematically deeper result which implies Theorem 3 was proven in [11]: 

Theorem 4 Let M and M be two similar MCS's, such that the first is weakly 
ergodic and the second is arbitrary. Then, for any a > 0 there exists € > 0 such 
that IlPu -1\lh ::; € for all u E E implies IIPw - .Pw11 1 ::; a for all words wE E* .• 

Theorem 3 follows from Theorem 4. To see this, one can chose any a < p in Theorem 
4 and obser~ that IlPw - .Pwlh ::; a < p implies that the word w is accepted or 
rejected by M in accordance to whether it is accepted or rejected by M. 
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5 Conditions on the Transition Probabilities 

This section discusses practical conditions for weakly ergodic MCS's in which the 
Markov operators Pu are induced by transition probability functions as in (4). 
Clearly, a simple sufficient condition for an MCS to be weakly ergodic is given 
by sUPUEE d(Pu ) ~ 1 - c, for some c> o. 
Maass and Sontag used Doeblin's condition to prove the computational power of 
noisy neural networks [5]. Although the networks in [5] constitute a very particular 
case of weakly ergodic MCS's, Doeblin's condition is applicable also to our general 
model. The following version of Doeblin's condition was given by Doob [3]: 

Definition 5.1 [3] Let P(x, A) be a TPF on (0,8). We say that it satisfies Doeblin 
condition, D~, if there exists a constant c and a probability measure p on (0,8) 
such that pn(x,A) ~ cp(A) for any set A E 8. • 

If an MCS M is weakly ergodic, then all its associated TPF Pw (x, A), wEE must 
satisfy Do for some n = n(w). Doop has proved [3, p. 197] that if P(x,A) satisfies 
Doeblin's condition D~ with constant c, then for any p, II E P, IIPp - Plliit ~ 
(1 - c)llp - 11111, i.e., d(P) ~ 1- c. This leads us to the following definition. 

Definition 5.2 Let M be an MCS. We say that the space 0 is small with respect 
to M if there exists an m > 0 such that all associated TPF P w (x, A), w E Em 
satisfy Doeblin's condition D~ uniformly with the same constant c, i.e., Pw (x, A) ~ 
cpw (A), wE Em. • 

The following theorem strengthens the result by Maass and Sontag [5]. 

Theorem 5 Let M be an MCS. If the space 0 is small with respect to M, then 
M is weakly ergodic, and it can recognize only definite languages. • 

This theorem provides a convenient method for checking weak ergodicity in a given 
TPF. The theorem implies that it is sufficient to execute the following simple check: 
choose any integer n, and then verify that for every state x and all input strings 
wEEn, the "absolutely continuous" part of all TPF Pw, wEEn is uniformly 
bounded from below: 

(6) 

where Pw(x, y) is the density of the absolutely continuous component of Pw(x,·) 
with respect to 'l/Jw, and C1, C2 are positive numbers. 

Most practical systems can be defined by null preserving TPF (including for example 
the systems in [5]). For these systems we provide (Theorem 6) a sufficient and neces­
sary condition in terms of density kernels. A TPF Pu(x, A), u E E is called null pre­
serving with respect to a probability measure pEP if it has a density with respect 
to p i.e., P(x,A) = IAPu(x,z)p(dz). It is not hard to see, that the property of null 
preserving per letter u E E implies that all TPF Pw(x, A) of words w E E* are null 
preserving as well. In this case d(Pu) = 1 - infx,y In min{pu(x, z),pu(y, z)}Pu(dz) 
and we have: 

Theorem 6 Let M be an MCS defined by null preserving transition probability 
functions Pu , u E E. Then, M is weakly ergodic if and only if there exists n such 
that infwEE" infx,y In min{pu(x, z),pu(y, z)}Pu(dz) > o. • 
A similar result was previously established by paz [7, 8] for the case of a denumerable 
state space O. This theorem allows to treat examples which are not covered by 
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Theorem 5. For example, suppose that the space 0 is not small with respect to an 
MCS M, but for some n and any wEEn there exists a measure 1/Jw on (0, B) with 
the property that for any couple of states x, yEO 

1/Jw ({z : min{pw(x, z),Pw(y, z)} ~ cd) ~ C2 , (7) 

where Pw(x , y) is the density of Pw(x,·) with respect to 1/Jw, and Cl,C2 are positive 
numbers. This condition may occur even ifthere is no y such that Pu(x, y) S; Cl for 
all x E O. 

6 Examples of Weakly Ergodic Systems 

1. The Synchronous Parallel Model 

Let (Oi , Bi ), i = 1,2, .. . , N be a collection of measurable sets. Define ni = TIj # nj 

and Hi = TIj # Bj. Then (ni , Bi) are measurable spaces. Define also Ei = E x ni , 

and 11 = {Pxl,u (Xi , Ai) : (xi, u) E Ed be given stochastic kernels. Each set 11 
defines an MCS Mi. We can define an aggregate MCS by setting n TIi Oi, 
B = TIi Bi , S = TIi Si , R = TIi Ri, and 

(8) 

This describes a model of N noisy computational systems that update in syn­
chronous parallelism. The state of the whole aggregate is a vector of states of the 
individual components , and each receives the states of all other components as part 
of its input. 

Theorem 7 [12] Let M be an MCS defined by equation (8). It is weakly ergodic if 
at least one set of operators T is such that <5(P~,xl) S; 1- C for any u E E, xi E ni 
and some positive number c. • 

2. The Asynchronous Parallel Model 

In this model, at every step only one component is activated. Suppose that a collec-
tion of N similar MCS's M i, i = 1, ... , N is given. Consider a probability measure 
e = {fl," ., eN} on the set K = {I, ... , N} . Assume that in each computational 
step only one MCS is activated. The current state of the whole aggregate is rep­
resented by the state of its active component. Assume also that the probability of 
a computational system Mi to be activated, is time-independent and is given by 
Prob(Md = ei. The aggregate system is then described by stochastic kernels 

N 

Pu(x, A) = LeiP~(x , A) . (9) 
i=l 

Theorem 8 [12] Let M be an MCS defined by formula (9). It is weakly ergodic if 
at least one set of operators {PJ} , ... , {Pt'} is weakly ergodic. • 

3. Hybrid Weakly Ergodic Systems 

We now present a hybrid weakly ergodic computational system consisting of both 
continuous and discrete elements. The evolution of the system is governed by a 
differential equation, while its input arrives at discrete times. Let n = ffin , and 
consider a collection of differential equations 

Xu(s) = 1/Ju(xu(s)) , u E E, s E [0,00). (10) 
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Suppose that 1/Ju (x) is sufficiently smooth to ensure the existence and uniqueness of 
solutions of Equation (10) for s E [0,1] and for any initial condition. 

Consider a computational system which receives an input u(t) at discrete times 
to, t l , t 2 .... In the interval t E [ti, ti+d the behavior of the system is described by 
Equation (10), where s = t-tj. A random initial condition for the time tn is defined 
by 

(11) 

where X u (t,,_d(l) is the state of the system after previously completed computations, 
and Pu (x, A) , u E E is a family of stochastic kernels on 0 x 8. This describes a system 
which receives inputs in discrete instants of time; the input letters u E E cause 
random perturbations of the state Xu (t-l)(I) governed by the transition probability 
functions pu(t)(xu(t-l), A). In all other times the system is a noise-free continuous 
computational system which evolves according to equation (10). 

Let 0 = IRn , Xo E 0 be a distinguished initial state, and let Sand R be two subsets 
of 0 with the property of having a p-gap: dist(S, R) = infxEs,YER Ilx - yll = p > O. 
The first set is called a set of accepting final states and the second is called a 
set of reJ'ecting final states. We say that the hybrid computational system M = 
(0, E, xo, 1/Ju, S, R) recognizes L ~ E* if for all w = WO ... Wn E E* and the end 
letter $ tj. E the following holds: W E L ¢} Prob(xw"s(l) E S) > ~ + c, and 
W tj. L ¢} Prob(xw"s(l) E R) > ~ + c. 

Theorem 9 [12} Let M be a hybrid computational system. It is weakly ergodic if 
its set of evolution operators T = {Pu : u E E} is weakly ergodic. • 
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