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Abstract 

In a Bayesian mixture model it is not necessary a priori to limit the num­
ber of components to be finite. In this paper an infinite Gaussian mixture 
model is presented which neatly sidesteps the difficult problem of find­
ing the "right" number of mixture components. Inference in the model is 
done using an efficient parameter-free Markov Chain that relies entirely 
on Gibbs sampling. 

1 Introduction 

One of the major advantages in the Bayesian methodology is that "overfitting" is avoided; 
thus the difficult task of adjusting model complexity vanishes. For neural networks, this 
was demonstrated by Neal [1996] whose work on infinite networks led to the reinvention 
and popularisation of Gaussian Process models [Williams & Rasmussen, 1996]. In this 
paper a Markov Chain Monte Carlo (MCMC) implementation of a hierarchical infinite 
Gaussian mixture model is presented. Perhaps surprisingly, inference in such models is 
possible using finite amounts of computation. 

Similar models are known in statistics as Dirichlet Process mixture models and go back 
to Ferguson [1973] and Antoniak [1974]. Usually, expositions start from the Dirichlet 
process itself [West et al, 1994]; here we derive the model as the limiting case of the well­
known finite mixtures. Bayesian methods for mixtures with an unknown (finite) number 
of components have been explored by Richardson & Green [1997], whose methods are not 
easily extended to multivariate observations. 

2 Finite hierarchical mixture 

The finite Gaussian mixture model with k components may be written as: 
k 

P(yl/l-l, ... ,/l-k,Sl,· .. ,Sk, 7rl,· .. , 7rk) = L7rjN(/l-j,sjl), (1) 
j=l 

where /l-j are the means, Sj the precisions (inverse variances), 7rj the mixing proportions 
(which must be positive and sum to one) and N is a (normalised) Gaussian with specified 
mean and variance. For simplicity, the exposition will initially assume scalar observations, 
n of which comprise the training data y = {Yl, ... , Yn}. First we will consider these 
models for a fixed value of k, and later explore the properties in the limit where k -+ 00. 
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Gibbs sampling is a well known technique for generating samples from complicated mul­
tivariate distributions that is often used in Monte Carlo procedures. In its simplest form, 
Gibbs sampling is used to update each variable in turn from its conditional distribution 
given all other variables in the system. It can be shown that Gibbs sampling generates sam­
ples from the joint distribution, and that the entire distribution is explored as the number of 
Gibbs sweeps grows large. 

We introduce stochastic indicator variables, Ci, one for each observation, whose role is to 
encode which class has generated the observation; the indicators take on values 1 ... k. 
Indicators are often referred to as "missing data" in a mixture model context. 

In the following sections the priors on component parameters and hyperparameters will 
be specified, and the conditional distributions for these, which will be needed for Gibbs 
sampling, will be derived. In general the form of the priors are chosen to have (hopefully) 
reasonable modelling properties, with an eye to mathematical convenience (through the use 
of conjugate priors) . 

2.1 Component parameters 

The component means, f.1j, are given Gaussian priors: 

p(f.1jIA,r) ",N(A,r-1), (2) 

whose mean, A, and precision, r, are hyperparameters common to all components. The 
hyperparameters themselves are given vague Normal and Gamma priors: 

p(A) ",N(f.1Y,Cl;), p(r) "'9(1 ,Cl;2) ocr-1/ 2 exp(-rCl;/2), (3) 

where f.1y and 0-; are the mean and variance of the observations 1. The shape parameter of 
the Gamma prior is set to unity, corresponding to a very broad (vague) distribution. 

The conditional posterior distributions for the means are obtained by multiplying the like­
lihood from eq. (1) conditioned on the indicators, by the prior, eq. (2): 

1 
ilJ = - "" Yi, n· ~ 

J i:Ci=j 
(4) 

where the occupation number, nj, is the number of observations belonging to class j, and 
'[jj is the mean of these observations. For the hyperparameters, eg. (2) plays the role of 
the likelihood which together with the priors from eq. (4) give conditional posteriors of 
standard form: 

- 2 + "k 
N( f.1YCly r ~j=l f.1j 1 ) 

p(AIf.11,· .. ,f.1k,r)", -2 ' -2 ' 
Cl Y + kr Cl y + kr 

k 

p(rlf.11' ... ,f.1k,A) "'9(k+ 1, [A(Cl; + L(f.1j _A)2)]-1). 
+ . 1 J= 

(5) 

The component precisions, S j, are given Gamma priors: 

p(Sjlj3,w) '" 9(j3,w-1), (6) 

whose shape, j3, and mean, w-1 , are hyperparameters common to all components, with 
priors of inverse Gamma and Gamma form: 

(7) 

1 Strictly speaking, the priors ought not to depend on the observations. The current procedure is 
equivalent to nonnalising the observations and using unit priors. A wide variety of reasonable priors 
will lead to similar results. 
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The conditional posterior precisions are obtained by multiplying the likelihood from eq. (1) 
conditioned on the indicators, by the prior, eq . (6): 

p(sjlc, y, /Lj,,8, w) '" 9(,8 + nj, [,8: n' (w,8 + . L (Yi - /Lj)2)] -1). (8) 
J t :C;=J 

For the hyperparameters, eq. (6) plays the role of likelihood which together with the priors 
from eq. (7) give: 

The latter density is not of standard form, but it can be shown that p(log(,8) lSI, ... , Sk, w) 
is log-concave, so we may generate independent samples from the distribution for log(,8) 
using the Adaptive Rejection Sampling (ARS) technique [Gilks & Wild, 1992], and trans­
form these to get values for ,8. 

The mixing proportions, 7rj, are given a symmetric Dirichlet (also known as multivariate 
beta) prior with concentration parameter a/ k: 

k 

P(""'" , ".1<» ~ Dirichlet(<>/ k, ... , <>/ k) = r~(;1). }1,,;/.-1, (10) 

where the mixing proportions must be positive and sum to one. Given the mixing propor­
tions, the prior for the occupation numbers, n j, is multinomial and the joint distribution of 
the indicators becomes: 

k 

P(Cl, ... ,ckl7rl, ... , 7rk) = II 7r;i, 

j=1 

n 

nj = L 8Kronecker(Ci,j). 
i=1 

(11) 

Using the standard Dirichlet integral, we may integrate out the mixing proportions and 
write the prior directly in terms of the indicators: 

P(Cl, ... ,ckla ) = / P(Cl, . .. ,ckl 7rl, .. ' , 7rk)p(7rl, ... ,7rk)d7rl···d7rk (12) 

k k 
= r(a) / II 7rnj+a/k-ld7r ' = r(a) II r(nj + a/k) 

r(a/k)k j=1 J J r(n + a) j=1 r(a/k) . 

In order to be able to use Gibbs sampling for the (discrete) indicators, Ci, we need the 
conditional prior for a single indicator given all the others; this is easily obtained from 
eq. (12) by keeping all but a single indicator fixed: 

( '1 ) n-i,j + a/k p Ci = J C-i, a = , 
n-l+a 

(13) 

where the subscript -i indicates all indexes except i and n-i,j is the number of observa­
tions, excluding Yi, that are associated with component j. The posteriors for the indicators 
are derived in the next section. 

Lastly, a vague prior of inverse Gamma shape is put on the concentration parameter a: 

p(a- l ) '" 9(1,1) =} p(a) oc a-3 / 2 exp( - 1/(2a)). (14) 
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The likelihood for 0: may be derived from eq. (12), which together with the prior from 
eq. (14) gives: 

o:k r( 0:) 
p(nl, ... ,nklo:) = r(n + 0:)' 

( I o:k-3/2 exp( - 1/(20:))r(0:) 
po: k,n) ex r(n + 0:) . ( 15) 

Notice, that the conditional posterior for 0: depends only on number of observations, n, and 
the number of components, k, and not on how the observations are distributed among the 
components. The distribution p(log( 0:) I k, n) is log-concave, so we may efficiently generate 
independent samples from this distribution using ARS. 

3 The infinite limit 

So far, we have considered k to be a fixed finite quantity. In this section we will explore 
the limit k -7 00 and make the final derivations regarding the conditional posteriors for 
the indicators. For all the model variables except the indicators, the conditional posteriors 
for the infinite limit is obtained by substituting for k the number of classes that have data 
associated with them, krep , in the equations previously derived for the finite model. For the 
indicators, letting k -7 00 in eq. (13), the conditional prior reaches the following limits: 

components where n-i,j > 0: 

all other compo­
nents combined: = 

n-l+o:' 
0: 

n-l+o: 

(16) 

This shows that the conditional class prior for components that are associated with other 
observations is proportional to the number of such observations; the combined prior for 
all other classes depends only on 0: and n. Notice how the analytical tractability of the 
integral in eq. (12) is essential, since it allows us to work directly with the (finite number 
of) indicator variables, rather than the (infinite number of) mixing proportions. We may 
now combine the likelihood from eq. (1) conditioned on the indicators with the prior from 
eq. (16) to obtain the conditional posteriors for the indicators: 

componentsforwhichn_i,j > 0: P(Ci =jlc-i,ltj,Sj,o:) ex (17) 

P(Ci = jlc-i, o:)p(YiI Itj ,Sj ,c-d ex n-i,j S)1/2 exp ( - Sj (Yi - Itj)2 /2), 
n-l+o: 

all other components combined: p(Ci:j:. Ci' for all i :j:. i'lc-i, A, r, (3, W, 0:) ex: 

p(Ci:j:. Ci' foralli:j:. i'lc-i,O:) J p(Yilltj,sj)p(ltj,sjIA,r,{3,w)dltjdsj . 

The likelihood for components with observations other than Yi currently associated with 
them is Gaussian with component parameters Itj and Sj. The likelihood pertaining to the 
currently unrepresented classes (which have no parameters associated with them) is ob­
tained through integration over the prior distribution for these. Note, that we need not 
differentiate between the infinitely many unrepresented classes, since their parameter dis­
tributions are all identical. Unfortunately, this integral is not analytically tractable; I follow 
Neal [1998], who suggests to sample from the priors (which are Gaussian and Gamma 
shaped) in order to generate a Monte Carlo estimate of the probability of "generating a new 
class". Notice, that this approach effectively generates parameters (by sampling from the 
prior) for the classes that are unrepresented. Since this Monte Carlo estimate is unbiased, 
the resulting chain will sample from exactly the desired distribution, no matter how many 
samples are used to approximate the integral; I have found that using a single sample works 
fairly well in many applications. 

In detail, there are three possibilities when computing conditional posterior class probabil­
ities, depending on the number of observations associated with the class: 
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if n-i,j > 0: there are other observations associated with class j, and the posterior class 
probability is as given by the top line of eq. (17). 

if n - i,j = a and Ci = j: observation Yi is currently the only observation associated with 
class j; this is an peculiar situation, since there are no other observations associ­
ated with the class, but the class still has parameters. It turns out that this situation 
should be handled as an unrepresented class, but rather than sampling for the pa­
rameters, one simply uses the class parameters; consult [Neal 1998] for a detailed 
derivation. 

unrepresented classes: values for the mixture parameters are picked at random from the 
prior for these parameters, which is Gaussian for J.Lj and Gamma shaped for Sj. 

Now that all classes have parameters associated with them, we can easily evaluate their 
likelihoods (which are Gaussian) and the priors, which take the form n-i,jl(n - 1 + a) 
for components with observations other than Yi associated with them, and al (n - 1 + a) 
for the remaining class. When hitherto unrepresented classes are chosen, a new class is 
introduced in the model; classes are removed when they become empty. 

4 Inference; the "spirals" example 

To illustrate the model, we use the 3 dimensional "spirals" dataset from [Ueda et aI, 1998], 
containing 800 data point, plotted in figure 1. Five data points are generated from each of 
160 isotropic Gaussians, whose means follow a spiral pattern. 

o 16 18 20 22 24 
represented components 

4 5 6 7 
shape, 13 

Figure 1: The 800 cases from the three dimensional spirals data. The crosses represent a 
single (random) sample from the posterior for the mixture model. The krep = 20 repre­
sented classes account for nl (n + a) ~ 99.6% of the mass. The lines indicate 2 std. dev. in 
the Gaussian mixture components; the thickness of the lines represent the mass of the class. 
To the right histograms for 100 samples from the posterior for krep , a and f3 are shown. 

4.1 Multivariate generalisation 

The generalisation to multivariate observations is straightforward. The means, J.Lj, and 
precisions, S j, become vectors and matrices respectively, and their prior (and posterior) 
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distributions become multivariate Gaussian and Wishart. Similarly, the hyperparameter A 
becomes a vector (multivariate Gaussian prior) and rand w become matrices with Wishart 
priors. The (3 parameter stays scalar, with the prior on ((3 - D + 1)-1 being Gamma with 
mean 1/ D, where D is the dimension of the dataset. All other specifications stay the same. 
Setting D = 1 recovers the scalar case discussed in detail. 

4.2 Inference 

The mixture model is started with a single component, and a large number of Gibbs sweeps 
are performed, updating all parameters and hyperparameters in turn by sampling from the 
conditional distributions derived in the previous sections. In figure 2 the auto-covariance 
for several quantities is plotted, which reveals a maximum correlation-length of about 270. 
Then 30000 iterations are performed for modelling purposes (taking 18 minutes of CPU 
time on a Pentium PC) : 3000 steps initially for "burn-in", followed by 27000 to generate 
100 roughly independent samples from the posterior (spaced evenly 270 apart). In figure 
1, the represented components of one sample from the posterior is visualised with the 
data. To the right of figure 1 we see that the posterior number of represented classes is 
very concentrated around 18 - 20, and the concentration parameter takes values around 
a ::::: 3.5 corresponding to only a/ (n + a) ::::: 0.4% of the mass of the predictive distribution 
belonging to unrepresented classes. The shape parameter (3 takes values around 5-6, which 
gives the "effective number of points" contributed from the prior to the covariance matrices 
of the mixture components. 

4.3 The predictive distribution 

Given a particular state in the Markov Chain, the predictive distribution has two parts: the 
represented classes (which are Gaussian) and the unrepresented classes. As when updating 
the indicators, we may chose to approximate the unrepresented classes by a finite mixture 
of Gaussians, whose parameters are drawn from the prior. The final predictive distribution 
is an average over the (eg. 100) samples from the posterior. For the spirals data this density 
has roughly 1900 components for the represented classes plus however many are used to 
represent the remaining mass. I have not attempted to show this distribution. However, one 
can imagine a smoothed version of the single sample shown in figure 1, from averaging 
over models with slightly varying numbers of classes and parameters. The (small) mass 
from the unrepresented classes spreads diffusely over the entire observation range. 

-c 1[ -- " ", -~----;::=::;=::::;;:;:=:::::;-~ 
Q) --, og 

~ 0.8 log (a.) 
~ log(~-2) 
<.>0.6 
~ cO.4 
til 

·~0 .2 
o " g 0' '. - -'- . - ' .---- .~~,- ," '-' , - .~' 

:; 
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Q) 
c 
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~10 .:: 
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Figure 2: The left plot shows the auto-covariance length for various parameters in the 
Markov Chain, based on 105 iterations. Only the number of represented classes, krep , has 
a significant correlation; the effective correlation length is approximately 270, computed 
as the sum of covariance coefficients between lag -1000 and 1000. The right hand plot 
shows the number of represented classes growing during the initial phase of sampling. The 
initial 3000 iterations are discarded. 
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5 Conclusions 

The infinite hierarchical Bayesian mixture model has been reviewed and extended into a 
practical method. It has been shown that good performance (without overfitting) can be 
achieved on multidimensional data. An efficient and practical MCMC algorithm with no 
free parameters has been derived and demonstrated on an example. The model is fully au­
tomatic, without needing specification of parameters of the (vague) prior. This corroborates 
the falsity of the common misconception that "the only difference between Bayesian and 
non-Bayesian methods is the prior, which is arbitrary anyway ... ". 

Further tests on a variety of problems reveals that the infinite mixture model produces 
densities whose generalisation is highly competitive with other commonly used methods. 
Current work is undertaken to explore performance on high dimensional problems, in terms 
of computational efficiency and generalisation. 

The infinite mixture model has several advantages over its finite counterpart: 1) in many 
applications, it may be more appropriate not to limit the number of classes, 2) the number 
of represented classes is automatically determined, 3) the use of MCMC effectively avoids 
local minima which plague mixtures trained by optimisation based methods, ego EM [Ueda 
et aI, 1998] and 4) it is much simpler to handle the infinite limit than to work with finite 
models with unknown sizes, as in [Richardson & Green, 1997] or traditional approaches 
based on extensive crossvalidation. The Bayesian infinite mixture model solves simultane­
ously several long-standing problems with mixture models for density estimation. 
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