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Abstract 

We provide an analysis of the turbo decoding algorithm (TDA) 
in a setting involving Gaussian densities. In this context, we are 
able to show that the algorithm converges and that - somewhat 
surprisingly - though the density generated by the TDA may differ 
significantly from the desired posterior density, the means of these 
two densities coincide. 

1 Introd uction 

In many applications, the state of a system must be inferred from noisy observations. 
Examples include digital communications, speech recognition, and control with in­
complete information. Unfortunately, problems of inference are often intractable, 
and one must resort to approximation methods. One approximate inference method 
that has recently generated spectacular success in certain coding applications is the 
turbo decoding algorithm [1, 2], which bears a close resemblance to message-passing 
algorithms developed in the coding community a few decades ago [4]. It has been 
shown that the TDA is also related to well-understood exact inference algorithms 
[5, 6], but its performance on the intractable problems to which it is applied has 
not been explained through this connection. 

Several other papers have further developed an understanding of the turbo decoding 
algorithm. The exact inference algorithms to which turbo decoding has been related 
are variants of belief propagation [7J. However, this algorithm is designed for in­
ference problems for which graphical models describing conditional independencies 
form trees, whereas graphical models associated with turbo decoding possess many 
loops. To understand the behavior of belief propagation in the presence of loops, 
Weiss has analyzed the algorithm for cases where only a single loop is present [11]. 
Other analyses that have shed significant light on the performance of the TDA in 
its original coding context include [8, 9, 10]. 

In this paper, we develop a new line of analysis for a restrictive setting in which un­
derlying distributions are Gaussian. In this context, inference problems are tractable 
and the use of approximation algorithms such as the TDA are unnecessary. How­
ever, studying the TDA in this context enables a streamlined analysis that generates 
new insights into its behavior. In particular, we will show that the algorithm con­
verges and that the mean of the resulting distribution coincides with that of the 
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desired posterior distribution. 

While preparing this paper, we became aware of two related initiatives, both in­
volving analysis of belief propagation when priors are Gaussian and graphs possess 
cycles. Weiss and Freeman [12] were studying the case of graphs possessing only 
cliques of size two. Here, they were able to show that, if belief propagation con­
verges, the mean of the resulting approximation coincides with that of the true 
posterior distribution. At the same time, Frey [3] studied a case involving graphical 
structures that generalize those employed in turbo decoding. He also conducted an 
empirical study. 

The paper is organized as follows. In Section 2, we provide our working definition 
of the TDA. In Section 3, we analyze the case of Gaussian densities. Finally, a 
discussion of experimental results and open issues is presented in Section 4. 

2 A Definition of Turbo Decoding 

Consider a random variable x taking on values in ~n distributed according to a 
density PO. Let YI and Y2 be two random variables that are conditionally indepen­
dent given x. For example, YI and Y2 might represent outcomes of two independent 
transmissions of the signal x over a noisy communication channel. If YI and Y2 are 
observed, then one might want to infer a posterior density f for x conditioned on 
YI and Y2. This can be obtained by first computing densities pi and P2, where the 
first is conditioned on YI and the second is conditioned on Y2. Then, 

f = a (P~:2), 
where a is a "normalizing operator" defined by 

- 9 
ag = J g(x)dX' 

and multiplication/division are carried out pointwise. 

Unfortunately, the problem of computing f is generally intractable. The computa­
tional burden associated with storing and manipulating high-dimensional densities 
appears to be the primary obstacle. This motivates the idea of limiting attention 
to densities that factor. In this context, it is convenient to define an operator 71' 

that generates a density that factors while possessing the same marginals as another 
density. In particular, this operator is defined by 

("9)(') '" !! l ..... I •• ~ •• J 9(x)dX A dXi 

for all densities 9 and all a E ~n, where dx /\ dXi = dXI'" dXi-Idxi+I ... dXn. 
One may then aim at computing 7l'f as a proxy for f. Unfortunately, even this 
problem is generally intractable. The TDA can be viewed as an iterative algorithm 
for approximating 71' f. 
Let operators FI and F2 be defined by 

FIg = a ( ( 7l'~:) ~ ) , 
and 
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for any density g. The TDA is applicable in cases where computation of these two 
operations is tractable. The algorithm generates sequences qik) and q~k) according 
to 

(HI) _ F (k) d (HI) _ D (k) 
ql - 1 q2 an q2 - r2qI . 

initialized with densities qiO) and q~O) that factor. The hope is that Ci.(qik)q~k) /Po) 
converges to an approximation of 7r f. 

3 The Gaussian Case 

We will consider a setting in which joint density of x, Yl, and Y2, is Gaussian. In this 
context, application of the TDA is not warranted - there are tractable algorithms for 
computing conditional densities when priors are Gaussian. Our objective, however, 
is to provide a setting in which the TDA can be analyzed and new insights can be 
generated. 

Before proceeding, let us define some notation that will facilitate our exposition. 
We will write 9 "-' N(/-Lg, ~g) to denote a Gaussian density 9 whose mean vector and 
covariance matrix are /-Lg and ~g, respectively. For any matrix A, b"(A) will denote 
a diagonal matrix whose entries are given by the diagonal elements of A. For any 
diagonal matrices X and Y, we write X ~ Y if Xii ~ Yii for all i. For any pair of 
nonsingular covariance matrices ~u and ~v such that ~;; 1 + ~; 1 - I is nonsingular, 
let a matrix AEu .E" be defined by 

A == (~-l + ~-l _ I)-I. 
Eu.E" u v 

To reduce notation, we will sometimes denote this matrix by Auv. 

When the random variables x, Yt, and Y2 are jointly Gaussian, the densities pi, P2' 
f, and Po are also Gaussian. We let 

pi "-' N(/-Ll, ~l)' P2 "-' N(/-L2, ~2)' f "-' N(/-L, ~), 

and assume that both ~l and ~2 are symmetric positive definite matrices. We will 
also assume that Po "-' N(O, I) where I is the identity matrix. It is easy to show 
that A E1 •E2 is well-defined. 

The following lemma provides formulas for the means and covariances that arise 
from multiplying and rescaling Gaussian densities. The result follows from simple 
algebra, and we state it without proof. 

Lemma 1 Let u "-' N(/-Lu, ~u) and v "-' N(/-Lv, ~v), where ~u and ~v are positive 
definite. If ~;;l + ~;l - I is positive definite then 

Ci. (;~) "-' N (Auv (~~l /-Lu + ~;l/-Lv) ,Auv) . 

One immediate consequence of this lemma is an expression for the mean of f: 

/-L = AE1.E2 (~ll/-Ll + ~2l/-L2). 

Let S denote the set of covariance matrices that are diagonal and positive definite. 
Let 9 denote the set of Gaussian densities with covariance matrices in S. We then 
have the following result, which we state without proof. 

Lemma 2 The set 9 is closed under Fl and F2 • 

If the TDA is initialized with qiO), q~O) E g, this lemma allows us to represent all 
iterates using appropriate mean vectors and covariance matrices. 
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3.1 Convergence Analysis 

Under suitable technical conditions, it can be shown that the sequence of mean 
vectors and covariance matrices generates by the TDA converges. Due to space 
limitations, we will only present results pertinent to the convergence of covariance 
matrices. FUrthermore, we will only present certain central components of the 
analyses. For more complete results and detailed analyses, we refer the reader to 
our upcoming full-length paper. 

Recall that the TDA generates sequences qik) and q~k) according to 

(HI) F (k) d (HI) D (k) 
qI = Iq2 an q2 = L'2qI . 

As discussed earlier, if the algorithm is initialized with elements of 9, by Lemma 2, 

q(k) '" N (m(k) E(k)) and q(k) '" N (m(k) ~(k)) 
1 1 , 1 2 2 '~2 , 

for appropriate sequences of mean vectors and covariance matrices. It turns out 
that there are mappings 7i : S 1--+ S and 72 : S 1--+ S such that 

Eik+1) = 7i (E~k)) and E~k+1) = 72 (Elk)) , 
for all k. Let T == 7i 072. To establish convergence of Elk) and E~k), it suffices to 

show that Tn(E~O)) converges. The following theorem establishes this and further 
points out that the limit does not depend on the initial iterates. 

Theorem 1 There exists a matrix V* E S such that 

lim m(V) = V*, 
n->oo 

for all V E S. 

3.1.1 Preliminary Lemmas 

Our proof of Theorem 1 relies on a few lemmas that we will present in this section. 
We begin with a lemma that captures important abstract properties of the function 
T. Due to space constraints, we omit the proof, even though it is nontrivial. 

Lemma 3 
(a) There exists a matrix DES such that for all DES, D ::; T(D) ::; f. 
(b) For all X, YES, if X::; Y then T(X) ::; T(Y). 
( c) The function T is continuous on S. 
(d) For all f3 E (0,1) and DES, (f3 + o:)T (D) ::; T (f3D) for some 0: > o. 

The following lemma establishes convergence when the sequence of covariance ma­
trices is initialized with the identity matrix. 

Lemma 4 The sequence Tn (f) converges in S to a fixed point of T. 

Proof; By Lemma 3(a), T(1) ::; f, and it follows from monotonicity of T (Lemma 
3(b)) that Tn+1(I) ::; Tn(I) for all n. Since Tn(I) is bounded below by a matrix 
DES, the sequence converges in S. The fact that the limit is a fixed point of T 
follows from the continuity of T (Lemma 3( c) ). • 

Let V* = limn->oo Tn(I). This matrix plays the following special role. 

Lemma 5 The matrix V* is the unique fixed point in S of T. 
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Proof: Because Tn (1) converges to V* and T is monotonic, no matrix V E S with 
V i= V* and V* ::; V ::; I can be a fixed point. Furthermore, by Lemma 3(a), no 
matrix V E S with V ~ I and V i= I can be a fixed point. For any V E S with 
V::; V*, let 

f3v = sup {f3 E (0, 111f3V* ::; V} . 

For any V E S with V i= V* and V ::; V*, we have f3v < 1. For such a V, by 
Lemma 3(d), there is an a > 0 such that T(f3vV*) ~ (f3v + a)V*, and therefore 
T(V) i= V. The result follows. • 

3.1.2 Proof of Theorem 1 

Proof: For V E S with V* ::; V ::; I convergence to V* follows from Lemma 4 and 
monotonicity (Lemma 3(b)). For V E S with V ~ I, convergence follows from the 
fact that V* ::; T(V) ::; I, which is a consequence of the two previously invoked 
lemmas together with Lemma 3(a). 

Let us now address the case of V E S with V ::; V*. Let f3v be defined as in 
the proof of Lemma 5. Then, f3v V* ::; T (f3v V*). By monotonicity, Tn (f3v V*) ::; 
Tn+I(f3v V*) ::; V* for all n. It follows that Tn(f3v V*) converges, and since T 
is continuous, the limit must be the unique fixed point V*. We have established 
convergence for elements V of S satisfying V ::; V* or V ~ V*. For other elements 
of S, convergence follows from the monotonicity of T. • 

3.2 Analysis of the Fixed Point 

As discussed in the previous section, under suitable conditions, FI 0 F2 and F2 0 FI 
each possess a unique fixed point, and the TDA converges on these fixed points. 
Let qi ,...., N (f-Lq~ , Eq~) and q2 ,...., N (f-Lq2 ' Eq* ) denote the fixed points of FI 0 F2 and 
F2 0 FI, respectively. Based on Theorem 1, Eq~ and Eqi are in S. 

The following lemma provides an equation relating means associated with the fixed 
points. It is not hard to show that Aq*q*, AEI E *' and AE * E2' which are used in 

1 2 ' q2 ql ' 

the statement, are well-defined. 

Lemma 6 

Aq~qi (E;~lf-Lq; + E~lf-Lqi) = AE1 ,Eq2 (E1lf-LI + E~If-Lq2) = AEq~,E2 (E;;lf-Lq~ + E2"If-L2) 

Proof: It follows from the definitions of FI and F2 that, if qi = Fl q2 and q2 = F2qi, 

* * * * * * a ql q2 = a7rPI q2 = a7r qlP2 . 
Po Po Po 

The result then follows from Lemma 1 and the fact that 7r does not alter the mean 
of a distribution. • 

We now prove a central result of this paper: the mean of the density generated by 
the TDA coincides with the mean f-L of the desired posterior density f. 

Theorem 2 a (qi q2/ po) ,...., N (f-L, Aq; qi ) 

Proof: By Lemma 1, f-L = AE 1 ,E2 (E1lf-LI + E2"If-L2) , while the mean of a(qiq2lpo) 

is Aq~q2 (E;~l f-Lq; + E;i f-Lqi)' We will show that these two expressions are equal. 
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Figure 1: Evolution of errors. 

Multiplying the equations from Lemma 6 by appropriate matrices, we obtain 

Aq*q* A~1 E Aq*q* (2:-.I j.Lq* + 2:-.1 j.Lq*) = Aq*q* (2:11 j.Ll + 2:-} j.Lq*) , 
1 2 1 , q:i 1 2 ql 1 q2 2 1 2 q2 2 

and 

It follows that 

( Aq~q:i (A~;,Eq:i +A~:~ ,E2) - I ) Aq~q:i (2:;il j.Lq~ + 2:;:i1 j.Lq:i) = Aqiq:i (2:11 j.Ll + 2:2'1 j.L2) , 

and therefore 

(A~IE +A~1 E -Aq-.Iq*) Aq*q* (2:q-.Ij.Lq* +2:q-.Ij.Lq*) = 2:11j.Ll+2:2'1j.L2' 
1, q:i q~ , 2 1 2 1 2 1 1 2 2 

• 
4 Discussion and Experimental Results 

The limits of convergence qi and q2 of the TDA provide an approximation 
a( qi q2 / po) to 7r f. We have established that the mean of this approximation coin­
cides with that of the desired density. One might further expect that the covariance 
matrix of a(qiq2/PO) approximates that of 7r f, and even more so, that qi and q2 bear 
some relation to pi and P2' Unfortunately, as will be illustrated by experimental 
results in this section, such expectations appear to be inaccurate. 

We performed experiments involving 20 and 50 dimensional Gaussian densities (Le., 
x was either 20 or 50 dimensional in each instance). Problem instances were sampled 
randomly from a fixed distribution. Due to space limitations, we will not describe 
the tedious details of the sampling mechanism. 

Figure 1 illustrates the evolution of certain "errors" during representative runs of 
the TDA on 20-dimensional problems. The first graph plots relative errors in means 
of densities a(q~n)q~n) /po) generated by iterates of the TDA. As indicated by our 
analysis, these errors converge to zero. The second chart plots a measure of relative 
error for the covariance of a(q~n)q~n) /po) versus that of 7rf for representative runs. 
Though these covariances converge, the ultimate errors are far from zero. The two 
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Figure 2: Errors after 50 iterations. 

final graphs plot errors between the means of qin) and q~n) and those of pi and pi , 
respectively. Again, though these means converge, the ultimate errors can be large. 

Figure 2 provides plots of the same sorts of errors measured on 1000 different in­
stances of 50-dimensional problems after the 50th iteration of the TDA. The hori­
zontal axes are labeled with indices of the problem instances. Note that the errors 
in the first graph are all close to zero (the units on the vertical axis must be multi­
plied by 10- 5 and errors are measured in relative terms). On the other hand, errors 
in the other graphs vary dramatically. 

It is intriguing that - at least in the context of Gaussian densities - the TDA can ef­
fectively compute conditional means without accurately approximating conditional 
densities. It is also interesting to note that, in the context of communications, the 
objective is to choose a code word x that is comes close to the transmitted code x. 
One natural way to do this involves assigning to x the code word that maximizes 
the conditional density J, i.e., the one that has the highest chance of being correct. 
In the Gaussian case that we have studied, this corresponds to the mean of J - a 
quantity that is computed correctly by the TDA! It will be interesting to explore 
generalizations of the line of analysis presented in this paper to other classes of 
densities. 
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