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Abstract 

We introduce a novel method of constructing language models, 
which avoids some of the problems associated with recurrent neu­
ral networks. The method of creating a Prediction Fractal Machine 
(PFM) [1] is briefly described and some experiments are presented 
which demonstrate the suitability of PFMs for language modeling. 
PFMs distinguish reliably between minimal pairs, and their be­
havior is consistent with the hypothesis [4] that wellformedness is 
'graded' not absolute. A discussion of their potential to offer fresh 
insights into language acquisition and processing follows. 

1 Introduction 

Cognitive linguistics has seen the development in recent years of two important, 
related trends. Firstly, a widespread renewal of interest in the statistical, 'graded' 
nature of language (e.g. [2]-[4]) is showing that the traditional all-or-nothing no­
tion of well-formedness may not present an accurate picture of how the congruity 
of utterances is represented internally. Secondly, the analysis of state space tra­
jectories in artificial neural networks (ANNs) has provided new insights into the 
types of processes which may account for the ability of learning devices to acquire 
and represent language, without appealing to traditional linguistic concepts [5]-[7]. 
Despite the remarkable advances which have come out of connectionist research 
(e.g. [8]), and the now common use of recurrent networks, and Simple Recurrent 
Networks (SRNs) [9] especially, in the study of language (e.g. [10]), recurrent neu­
ral networks suffer from particular problems which make them imperfectly suited 
to language tasks. The vast majority of work in this field employs small networks 
and datasets (usually artificial), and although many interesting linguistic issues 
may be thus tackled, real progress in evaluating the potentials of state trajecto­
ries and graded 'grammaticality' to uncover the underlying processes responsible 
for overt linguistic phenomena must inevitably be limited whilst the experimental 
tasks remain so small. Nevertheless, there are certain obstacles to the scaling-up 
of networks trained by back-propagation (BP). Such networks tend towards ever 
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longer training times as the sizes of the input set and of the network increase, and 
although Real-Time Recurrent Learning (RTRL) and Back-propagation Through 
Time are potentially better at modeling temporal dependencies, training times are 
longer still [11]. Scaling-up is also difficult due to the potential for catastrophic 
interference and lack of adaptivity and stability [12]-[14]. Other problems include 
the rapid loss of information about past events as the distance from the present in­
creases [15] and the dependence of learned state trajectories not only on the training 
data, but also upon such vagaries as initial weight vectors, making their analysis 
difficult [16]. Other types of learning device also suffer problems. Standard Markov 
models require the allocation of memory for every n-gram, such that large values 
of n are impractical; variable-length Markov models are more memory-efficient, but 
become unmanageable when trained on large data sets [17]. Two important, related 
concerns in cognitive linguistics are thus (a) to find a method which allows language 
models to be scaled up, which is similar in spirit to recurrent neural networks, but 
which does not encounter the same problems of scale, and (b) to use such a method 
to evince new insights into graded grammaticality from the state trajectories which 
arise given genuinely large, naturally-occurring data sets. 

Accordingly, we present a new method of generating state trajectories which avoids 
most of these problems. Previously studied in a financial prediction task, the 
method creates a fractal map of the training data, from which state machines are 
built. The resulting models are known as Prediction Fractal Machines (PFMs) 
[18] and have some useful properties. The state trajectories in the fractal repre­
sentation are fast and computationally efficient to generate, and are accurate and 
well-understood; it may be inferred that, even for very large vocabularies and train­
ing sets, catastrophic interference and lack of adaptivity and stability will not be a 
problem, given the way in which representations are built (demonstrating this is a 
topic for future work); training times are significantly less than for recurrent net­
works (in the experiments described below, the smallest models took a few minutes 
to build, while the largest ones took only around three hours; in comparison, all 
of the ANNs took longer - up to a day - to train); and there is little or no loss of 
information over the course of an input sequence (allowing for the finite precision 
of the computer). The scalability of the PFM was taken advantage of by training 
on a large corpus of naturally-occurring text. This enabled an assessment of what 
potential new insights might arise from the use of this method in truly large-scale 
language tasks. 

2 Prediction Fractal Machines (PFMs) 

A brief description of the method of creating a PFM will now be given. Interested 
readers should consult [1], since space constraints preclude a detailed examination 
here. The key idea behind our predictive model is a transformation F of symbol 
sequences from an alphabet (here, tagset) {I, 2, ... , N} into points in a hypercube 
H = [0, I]D. The dimensionality D of the hypercube H should be large enough for 
each symbol 1, 2, ... , N to be identified with a unique vertex of H. The particular 
assignment of symbols to vertices is arbitrary. The transformation F has the crucial 
property that symbol sequences sharing the same suffix (context) are mapped close 
to each other. Specifically, the longer the common suffix shared by two sequences, 
the smaller the (Euclidean) distance between their point representations. The trans­
formation F used in this study corresponds to an Iterative Function System [19] 
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consisting of N affine maps i : H -+ H, i = 1,2, ... , N, 

i(x) = ~(x + ti), tj E {a, l}D, ti =F tj for i =F j. (1) 

Given a sequence 5182 ... 5L of L symbols from the alphabet 1,2, .. . , N, we construct 
its point representation as 

where x* is the center {l}D of the hypercube H. (Note that as is common in the 
Iterative Function Systems literature, i refers either to a symbol or to a map, de­
pending upon the context.) PFMs are constructed on point representations of sub­
sequences appearing in the training sequence. First, we slide the window of length 
L > 1 over the training sequence. At each position we transform the sequence 
of length L appearing in the window into a point. The set of points obtained by 
sliding through the whole training sequence is then partitioned into several classes 
by k-means vector quantization (in the Euclidean space), each class represented by 
a particular codebook vector. The number of code book vectors required is cho­
sen experimentally. Since quantization classes group points lying close together, 
sequences having point representations in the same class (potentially) share long 
suffixes. The quantization classes may then be treated as prediction contexts, and 
the corresponding predictive symbol probabilities computed by sliding the window 
over the training sequence again and counting, for each quantization class, how of­
ten a sequence mapped to that class was followed by a particular symbol. In test 
mode, upon seeing a new sequence of L symbols, the transformation F is again 
performed, the closest quantization center found, and the corresponding predictive 
probabilities used to predict the next symbol. 

3 An experimental comparison of PFMs and recurrent 
networks 

The performance of the PFM was compared against that of a RTRL-trained re­
current network on a next-tag prediction task. Sixteen grammatical tags and a 
'sentence start' character were used. The models were trained on a concatenated 
sequence (22781 tags) of the top three-quarters of each of the 14 sub-corpora of 
the University of Pennsylvania 'Brown' corpus1 . The remainder was used to create 
test data, as follows. Because in a large training corpus of naturally-occurring data, 
contexts in most cases have more than one possible correct continuation, simply 
counting correctly predicted symbols is insufficient to assess performance, since this 
fails to count correct responses which are not targets. The extent to which the mod­
els distinguished between grammatical and ungrammatical utterances was therefore 
additionally measured by generating minimal pairs and comparing their negative log 
likelihoods (NLLs) per symbol with respect to the model. Likelihood is computed 
by sliding through the test sequence and for each window position, determining the 
probability of the symbol that appears immediately beyond it. As processing pro­
gresses, these probabilities are multiplied. The negative of the natural logarithm is 
then taken and divided by the number of symbols. Significant differences in NLLs 

Ihttp://www.ldc.upenn.edu/ 
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are much harder to achieve between members of minimal pairs than between gram­
matical and random sequences, and are therefore a good measure of model validity. 
Minimal pairs generated by theoretically-motivated manipulations tend to be no 
longer ungrammatical given a small tagset, because the removal of grammatical 
sub-classes necessarily also removes a large amount of information. Manipulations 
were therefore performed by switching the positions of two symbols in each sentence 
in the test sets. Symbols switched could be any distance apart within the sentence, 
as long as the resulting sentence was ungrammatical under all surface instantiations. 
By changing as little as possible to make the sentence ungrammatical, the goal was 
retained that the task of distinguishing between grammatical and ungrammatical 
sequences be as difficult as possible. The test data then consisted of 28 paired 
grammatical/ungrammatical test sets (around 570 tags each), plus an ungrammat­
ical, 'meaningless' test set containing all 17 codes listed several times over, used 
to measure baseline performance. Ten 1st-order randomly-initialised networks were 
trained for 100 epochs using RTRL. The networks consisted of 1 input and 1 output 
layer, each with 17 units corresponding to the 17 tags, 2 hidden layers, each with 10 
units, and 1 context layer of 10 units connected to the first hidden layer. The second 
hidden layer was used to increase the flexibility of the maps between the hidden 
representations in the recurrent portion and the tag activations at the output layer. 
A logistic sigmoid activation function was used, the learning rate and momentum 
were set to 0.05, and the training sequence was presented at the rate of one tag 
per clock tick. The PFMs were derived by clustering the fractal representation of 
the training data ten times for various numbers of codebook vectors between 5 and 
200. More experiments were performed using PFMs than neural networks because 
in the former case, experience in choosing appropriate numbers of codebook vectors 
was initially lacking for this type of data. 

The results which follow are given as averages, either over all neural networks, or 
else over all PFMs derived from a given number of codebook vectors. The net­
works correctly predicted 36.789% and 32.667% of next tags in the grammatical 
and ungrammatical test sets, respectively. The PFMs matched this performance 
at around 30 codebook vectors (37.134% and 32.814% respectively), and exceeded 
it for higher numbers of vectors (39.515% and 34.388% respectively at 200 vec­
tors). The networks generated mean NLLs per symbol of 1.966 and 2.182 for the 
grammatical and ungrammatical test sets, respectively (a difference of 0.216) and 
4.157 for the 'meaningless' test set (the difference between NLLs for grammatical 
and 'meaningless' data = 2.191). The PFMs matched this difference in NLLs at 
40 codebook vectors (NLL grammatical = 1.999, NLL ungrammatical = 2.217; dif­
ference = 0.218). The NLL for the 'meaningless' data at 40 codebook vectors was 
6.075 (difference between NLLs for grammatical and 'meaningless' data = 4.076). 
The difference between NLLs for grammatical and ungrammatical, and for gram­
matical and 'meaningless' data sets, became even larger with increased numbers 
of codebook vectors. The difference in performance between grammatical and un­
grammatical test sets was thus highly significant in all cases (p < .0005): all the 
models distinguished what was grammatical from what was not. This conclusion 
is supported by the fact that the mean, NLLs for the 'meaningless' test set were 
always noticeably higher than those for the minimal pair sets. 
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4 Discussion 

The PFMs exceeded the performance of the networks for larger numbers of code­
book vectors, but it is possible that networks with more hidden nodes would also 
do better. In terms of ease of use, however, as well as in their scaling-up potential, 
PFMs are certainly superior. Their other great advantage is that the representations 
created are dependable (see section 1), making hypothesis creation and testing not 
just more rapid, but also more straightforward: the speed with which PFMs may 
be trained made it possible to make statistically significant observations for a large 
number of clustering runs. In the introduction, 'graded' wellformedness was spoken 
of as being productive of new hypotheses about the nature of language. Our use of 
minimal pairs, designed to make a clear-cut distinction between grammatical and 
ungrammatical utterances, appears to leave this issue to one side. But in reality, our 
results were rather pertinent to it, as the use of the likelihood measure might indeed 
imply. The Brown corpus consists of subcorpora representative of 14 different dis­
course types, from fiction to government documents. Whereas traditional notions 
of grammaticality would lead us to treat all of the 'ungrammatical' sentences in 
the minimal pair test sets as equally ungrammatical, the NLLs in our experiments 
tell a different story. The grammatical versions consistently had a lower associated 
NLL (higher probability) than the ungrammatical versions, but the difference be­
tween these was much smaller than that between the 'meaningless' data and either 
the grammatical or the ungrammatical data. This supports the concept of 'graded 
grammaticality', and NLLs for 'meaningless' data such as ours might be seen as a 
sort of benchmark by which to measure all lesser degrees ofungrammaticality. (Note 
incidentally that the PFMs appear to associate with the 'meaningless' data a signif­
icantly higher NLL than did the networks, even though the difference between the 
NLLs of the grammatical and ungrammatical data was the same. This is suggestive 
of PFMs having greater powers of discrimination between grades of wellformedness 
than the recurrent networks used, but further research will be needed to ascertain 
the validity of this.) Moreover, the NLL varied not just between grammatical and 
ungrammatical test sets, but also from sentence to sentence, from word to word 
and from discourse style to discourse style. While it increased, often dramatically, 
when the manipulated portion of an ungrammatical sentence was encountered, some 
words in grammatical sentences exhibited a similar effect: thus, if a subsequence 
in a well-formed utterance occurs only rarely - or never - in a training set, it will 
have a high associated NLL in the same way as an ungrammatical one does. This is 
likely to happen even for very large corpora, since some grammatical structures are 
very rare. This is consistent with recent findings that, during human sentence pro­
cessing, well-formedness is linked to conformity with expectation [20] as measured 
by CLOZE scores. Interesting also was the remarkable variation in NLL between 
discourse styles. Although the mean NLL across all discourse styles (test sets) is 
lower for the grammatical than for the ungrammatical versions, it cannot be guar­
anteed that the grammatical version of one test set will have a lower NLL than the 
ungrammatical version of another. Indeed, the grammatical and ungrammatical 
NLLs interleave, as may be observed in figure 1, which shows the NLLs for the 
three discourse styles which lie at the bottom, middle and top of the range. Even 
more interestingly, if the NLLs for the grammatical versions of all discourse styles 
are ordered according to where they lie within this range, it becomes clear that NLL 
is a predictor of discourse style. Styles which linguists class as 'formal', e.g. those of 
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Figure 1: NLLs of minimal pair test sets containing different discourse styles suggest 
grades of wellformedness based upon prototypicality. 

the Learned and Government Document test sets, have the lowest NLLs, with the 
three Press test sets clustering just above, and the Fiction test sets, exemplifying 
creative language use, clustering at the high end. Similarly, that the Learned and 
Government test sets have the lowest NLLs conforms with the intuition that their 
usage lies closest to what is grammatically 'prototypical ' - even though in the train­
ing set, 6 out of the 14 test sets are fiction and thus might be expected to contribute 
more to the prototype. That they do not, suggests that usage varies significantly 
across fiction test sets. 

5 Conclusion 

Work on the use of PFMs in language modeling is at an early stage, but as results 
to date show, they have a lot to offer. A much larger project is planned, which will 
examine further Allen and Seidenberg's hypothesis that 'graded grammaticality' (or 
wellformedness) applies not only to syntax, but also to other language subdomains 
such as semantics, an integral part of this being the use of larger corpora and 
tagsets, and the identification of vertices with semantic/syntactic features rather 
than atomic symbols. Identifying the possibilities of combining PFMs with ANNs, 
for example as a means of bypassing the normal method of creating state-space 
trajectories, is the subject of current study. 
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