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In this paper, we propose a full Bayesian model for neural networks. 
This model treats the model dimension (number of neurons), model 
parameters, regularisation parameters and noise parameters as ran­
dom variables that need to be estimated. We then propose a re­
versible jump Markov chain Monte Carlo (MCMC) method to per­
form the necessary computations. We find that the results are not 
only better than the previously reported ones, but also appear to 
be robust with respect to the prior specification. Moreover, we 
present a geometric convergence theorem for the algorithm. 

1 Introduction 

In the early nineties, Buntine and Weigend (1991) and Mackay (1992) showed that a 
principled Bayesian learning approach to neural networks can lead to many improve­
ments [1 ,2] . In particular, Mackay showed that by approximating the distributions 
of the weights with Gaussians and adopting smoothing priors, it is possible to obtain 
estimates of the weights and output variances and to automatically set the regular­
isation coefficients. Neal (1996) cast the net much further by introducing advanced 
Bayesian simulation methods, specifically the hybrid Monte Carlo method, into the 
analysis of neural networks [3]. Bayesian sequential Monte Carlo methods have also 
been shown to provide good training results, especially in time-varying scenarios 
[4]. More recently, Rios Insua and Muller (1998) and Holmes and Mallick (1998) 
have addressed the issue of selecting the number of hidden neurons with growing 
and pruning algorithms from a Bayesian perspective [5,6]. In particular, they apply 
the reversible jump Markov Chain Monte Carlo (MCMC) algorithm of Green [7] 
to feed-forward sigmoidal networks and radial basis function (RBF) networks to 
obtain joint estimates of the number of neurons and weights. 

We also apply the reversible jump MCMC simulation algorithm to RBF networks so 
as to compute the joint posterior distribution of the radial basis parameters and the 
number of basis functions. However, we advance this area of research in two impor­
tant directions. Firstly, we propose a full hierarchical prior for RBF networks. That 

* Authorship based on alphabetical order. 
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is, we adopt a full Bayesian model, which accounts for model order uncertainty and 
regularisation, and show that the results appear to be robust with respect to the 
prior specification. Secondly, we present a geometric convergence theorem for the 
algorithm. The complexity of the problem does not allow for a comprehensive dis­
cussion in this short paper. We have, therefore, focused on describing our objectives, 
the Bayesian model, convergence theorem and results. Readers are encouraged to 
consult our technical report for further results and implementation details [Sp. 

2 Problem statement 

Many physical processes may be described by the following nonlinear, multivariate 
input-output mapping: 

(1) 

where Xt E ~d corresponds to a group of input variables, Yt E ~c to the target vari­
ables, TIt E ~c to an unknown noise process and t = {I, 2,' .. } is an index variable 
over the data. In this context, the learning problem involves computing an approx­
imation to the function f and estimating the characteristics of the noise process 
given a set of N input-output observations: 0 = {Xl, X2, ... ,XN, YI, Y2, ... ,Y N } 

Typical examples include regression, where YI :N,1 :C2 is continuous; classification, 
where Y corresponds to a group of classes and nonlinear dynamical system identi­
fication, where the inputs and targets correspond to several delayed versions of the 
signals under consideration. 

We adopt the approximation scheme of Holmes and Mallick (199S), consisting of 
a mixture of k RBFs and a linear regression term. Yet, the work can be easily 
extended to other regression models. More precisely, our model Mis: 

Mo : Yt = b + f3'Xt + TIt k = 0 

Mk: Yt = ~~=l aj¢(IIx t - 11)1) + b + f3'Xt + TIt k ~ 1 (2) 

where" ./1 denotes a distance metric (usually Euclidean or Mahalanobis), I-Lj E ~d 
denotes the j-th RBF centre for a model with k RBFs, aj E ~c the j-th RBF 
amplitude and b E ~c and f3 E ~d X ~c the linear regression parameters. The noise 
sequence TIt E ~c is assumed to be zero-mean white Gaussian. It is important to 
mention that although we have not explicitly indicated the dependency of b, f3 and 
TIt on k, these parameters are indeed affected by the value of k. For convenience, 
we express our approximation model in vector-matrix form: 

b1 . . , be 
Yl,l . . . Y1,e 
Y2,1 . .. Y2,e 

1 X1,1 .. . X1 ,d </J(X1 , 1'1)' .. </J(X1, JLk) f31,1 ... f31 ,e 
1 X2,1 . .. X2 ,d </J(X2, 1'1) .. . </J(X2, JLk) 

= f3d,l ... f3d,e +n1:N 
a1,1 .. , a1,e 

YN,l .. . YN,c 1 XN,l" ' XN,d </J(XN, 1'1) ' " </J(XN, JLk) 
ak ,l .,. ak,e 

1The software is available at http://vvv . cs . berkeley. edur jfgf. 
2Y1 :N,1 :e is an N by c matrix, where N is the number of data and c the number of 

outputs. We adopt the notation Y1:N,j ~ (Y1,j,Y2,j, .. . ,YN,j)' to denote all the obser­
vations corresponding to the j-th output (j-th column of y) . To simplify the notation, 
Yt is equivalent to Yt,l :c' That is, if one index does not 'appear, it is implied that we 
are referring to all of its possible values. Similarly, Y is equivalent to Y1:N ,1:c, We will 
favour the shorter notation and only adopt the longer notation to avoid ambiguities and 
emphasise certain dependencies. 
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where the noise process is assumed to be normally distributed Dt '" N(o, un for 
i = 1, ... ,c. In shorter notation, we have: 

Y = D(J.Ll:k,l:d,Xl:N,l:d)Ol:l+d+k,l:C + Dt (3) 

We assume here that the number k of RBFs and their parameters (J ~ 
{Ol:m,l:c, J.Ll:k,l:d' uI:J, with m = 1 + d + k, are unknown. Given the data set 
{x,y}, our objective is to estimate k and (J E 8 k . 

3 Bayesian model and aims 

We follow a Bayesian approach where the unknowns k and (J are regarded as being 
drawn from appropriate prior distributions. These priors reflect our degree of belief 
on the relevant values of these quantities [9]. Furthermore, we adopt, a hierarchical 
prior structure that enables us to treat the priors' parameters (hyper-parameters) 
as random variables drawn from suitable distributions (hyper-priors). That is, in­
stead of fixing the hyper-parameters arbitrarily, we acknowledge that there is an 
inherent uncertainty in what we think their values should be. By devising proba­
bilistic models that deal with this uncertainty, we are able to implement estimation 
techniques that are robust to the specification of the hyper-priors. 

The overall parameter space 8 x 'II can be written as a finite union of sub­
spaces 8 x 'II = (U~:ir {k} x 8 k) X 'II where 8 0 ~ (JRd+l)C X (JR+) C and 
8 k ~ (JRd+l+k)c X (JR+)C X !lk for k E {I, ... ,kmax }. That is, ° E (JRd+l+k)C, 
0' E (JR+)C and J.L E !lk. The hyper-parameter space 'II ~ (1R+)C+l, with ele­
ments 'l/J ~ {A, 82 }, will be discussed at the end of this section. The space of 
the radial basis centres !lk is defined as a compact set including the input data: 
!lk ~ {J.L; J.Ll:k,i E [min(xl:N,i) -tSi, max(xl:N,i) +tSdk for i = 1, ... ,d with J.Lj,i of­
J.L1 i for j of- l}. Si = II max(xl:N,i) - min(xl :N,i)1I denotes the Euclidean distance 
for the i-th dimension of the input and t is a user specified parameter that we only 
need to consider if we wish to place basis functions outside the region where the 
input data lie. That is, we allow !lk to include the space of the input data and 
extend it by a factor which is proportional to the spread of the input data. The 

hyper-volume of this space is: ~k ~ (rrf=l (1 + 2t)Si)k. 

The maximum number of basis functions is defined as kmax ~ (N - (d + 1)) We 
also define !l ~ U~:(nk} x !lk with !lo ~ 0. Under the assumption of indepen­
dent outputs given (k, (J), the likelihood p(ylk, (J, 'l/J, x) for the approximation model 
described in the previous section is: 

D. (2,,-.,.1) -N /2 exp ( - 2!; (hN,i - D(I'"" x)a' ,m,,)' (Y' ,N" - D(I'H, x)a',m,;) ) 

We assume the following structure for the prior distribution: 

p(k, (J, 'l/J) = p( ol:mlk, 0'2, ( 2)p(J.Ll:k Ik)p(kIA)p(u2)p(A)p( ( 2) 

where the scale parameters 0';, are assumed to be independent of the hyper­
parameters (i. e. p( u 2 1A, ( 2 ) = p( 0'2)), independent of each other (p( 0'2) = 
rr~=l p(u;)) and distributed according to conjugate inverse-Gamma prior distri­
butions: 0'; '" I9 (~, ~). When 'Uo = 0 and /0 = 0, we obtain Jeffreys' un­
informative prior [9]. For a given 0'2, the prior distribution p(k, Glom, J.Ll:kIU2, A, 82 ) 

is: 

[lIC I 2 2 -1/2 1 I )] [][o(k,J.Ll:k)] [ Aklk! ] 27ru i 8 i 1m I exp (- -2-2 0l'm iOl:m i o.k k. 
. 20'.8. .,' :s " max AJI)'! t=l t t 6 J =0 
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where 1m denotes the identity matrix of size m x m and IIn(k, ILI :k) is the indicator 
function of the set n (1 if (k,IL1:k) En, 0 otherwise). 

The prior model order distribution p(kIA) is a truncated Poisson distribution. Con­
ditional upon k, the RBF centres are uniformly distributed. Finally, conditional 
upon (k, IL1:k), the coefficients 01 :m,i are assumed to be zero-mean Gaussian with 
variance c5~ ur The hyper-parameters c52 E (IR.+)C and A E IR.+ can be respec­
tively interpreted as the expected signal to noise ratios and the expected num­
ber of radial basis. We assume that they are independent of each other, i.e. 
p(A, c52) = p(A)p(c52 ). Moreover, p(c5 2 ) = TI~=1 p(c5~). As c52 is a scale parameter, 
we ascribe a vague conjugate prior density to it: c5~ "" YQ (a,p ,(302) for i = 1, ... ,c, 
with a02 = 2 and (302 > O. The variance of this hyper-prior with a02 = 2 is infinite. 
We apply the same method to A by setting an uninformative conjugate prior [9]: 
A"" Qa(1/2 +Cl,c2) (ci« 1 i = 1,2). 

3.1 Estimation and inference aims 

The Bayesian inference of k, 0 and 1/J is based on the joint posterior distribution 
p(k, 0, 1/Jlx, y) obtained from Bayes' theorem. Our aim is to estimate this joint dis­
tribution from which, by standard probability marginalisation and transformation 
techniques, one can "theoretically" obtain all posterior features of interest. We 
propose here to use the reversible jump MCMC method to perform the necessary 
computations, see [8] for details. MCMC techniques were introduced in the mid 
1950's in statistical physics and started appearing in the fields of applied statis­
tics, signal processing and neural networks in the 1980's and 1990's [3,5,6,10,11]. 
The key idea is to build an ergodic Markov chain (k(i) , O(i), 1/J(i»)iEN whose equi­
librium distribution is the desired posterior distribution. Under weak additional 
assumptions, the P » 1 samples generated by the Markov chain are asymptotically 
distributed according to the posterior distribution and thus allow easy evaluation 
of all posterior features of interest. For example: 

.-.... 1 P . .-... . ~~ 0(i)1I . (k(i») 
p(k = Jlx, y) = p I){j}(k(t») and IE(Olk = J, x, y) = t-~ {J}. 

i=1 ~i=1 lI{j}(k(t») 
(4) 

In addition, we can obtain predictions, such as: 
P 

.-... 1 ~ ( i) (i) 
IE(YN+llxl :N+l,Yl :N) = p L...,.D(ILl:k,XN+I)OI:m 

i=1 
(5) 

3.2 Integration of the nuisance parameters 

According to Bayes theorem, we can obtain the posterior distribution as follows: 

p(k, 0, 1/Jlx, y) ex p(Ylk, 0, 1/J, x)p(k, 0, 'ljJ) 
In our case, we can integrate with respect to 01:m (Gaussian distribution) and with 
respect to u; (inverse Gamma distribution) to obtain the following expression for 
the posterior: 

(k A c521 ) [rrC (c52)-m/2IM' 11/2 (TO + Y~:N,iP i,kYl:N,i ) (_ N~VQ)] 
P ,IL1:k" x,yex t t,k 2 X 

i=1 

[ lIn(k,lLk)][ Ak/k!. ][rrC (c5~)-(062 +l)exp(- (362 )][(A)(Cl-l/2)exP (-C2A )] 
<;Sk "kmax AJ / ., t c52 

LJj=O J. i=l t 

(6) 
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It is worth noticing that the posterior distribution is highly non-linear in the RBF 
centres I-'k and that an expression of p(klx,y) cannot be obtained in closed-form. 

4 Geometric convergence theorem 

It is easy to prove that the reversible jump MCMC algorithm applied to our model 
converges, that is, that the Markov chain (k( i) , I-'l( ~~, A ( i) , 82( i») is ergodic. We 

. iEN 
present here a stronger result, namely that (k(i)'I-'(I~LA(i),82(i») converges to 

. iEN 
the required posterior distribution at a geometric rate: 

Theorem 1 Let (k(i), I-'i~)k' A(i), 82(i») be the Markov chain whose transition 
. iEN 

kernel has been described in Section 3. This Markov chain converges to the proba-
bility distribution p (k, I-'l :k, A, 82 1 x, y). Furthermore this convergence occurs at a 

geometric rate, that is, for almost every initial point (k(O), I-'i~k, A (0),82(0») E 11 x 'II 

there exists a function of the initial states Co > 0 and a constant and p E [0,1) such 
that 

IIp(i) (k,I-'l:k,A,82) -p(k,I-'l:k,A, 82 I x ,y)IITV ~ CopLi/kmaxJ (7) 

where p(i) (k,I-'l:k,A,82) is the distribution of (k(i)'l-'i~~,A(i),82(i») and II·IITV is 

the total variation norm [11]. Proof. See [8] • 

Corollary 1 If for each iteration i one samples the nuisance parameters (Ol :m, u%) 

then the distribution of the series (k(i), oi~~, I-'i~~, u~(i), A(i), 8Z(i»)iEN converges ge­

ometrically towards p(k,Ol:m,I-'l:k,ULA,82Ix,y) at the same rate p. 

5 Demonstration: robot arm data 

This data is often used as a benchmark to compare learning algorithms3 . It involves 
implementing a model to map the joint angle of a robot arm (Xl, X2) to the position 
of the end of the arm (Yl, yz). The data were generated from the following model: 

Yl = 2.0cos(xt} + 1.3COS(Xl +X2) + El 
Y2 = 2.0sin(xt} + 1.3sin(xl +X2) +E2 

where Ei '" N(O, 0"2); 0" = 0.05. We use the first 200 observations of the data set 
to train our models and the last 200 observations to test them. In the simulations, 
we chose to use cubic basis functions. Figure 1 shows the 3D plots of the training 
data and the contours of the training and test data. The contour plots also in­
clude the typical approximations that were obtained using the algorithm. We chose 
uninformative priors for all the parameters and hyper-parameters (Table 1). To 
demonstrate the robustness of our algorithm, we chose different values for (382 (the 
only critical hyper-parameter as it quantifies the mean of the spread 8 of Ok)' The 
obtained mean square errors and probabilities for 81, 82, u~ k' u~ k and k, shown in 
Figure 2, clearly indicate that our algorithm is robust with 'respe~t to prior specifi­
cation. Our mean square errors are of the same magnitude as the ones reported by 
other researchers [2,3,5,6]; slightly better (Not by more than 10%). Moreover, our 
algorithm leads to more parsimonious models than the ones previously reported. 

3The robot arm data set can be found in David Mackay's home page: 
http://vol.ra.phy.cam.ac.uk/mackay/ 
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Figure 1: The top plots show the training data surfaces corresponding to each 
coordinate of the robot arm's position. The middle and bottom plots show the 
training and validation data [- -] and the respective REF network mappings [-]. 

Table 1: Simulation parameters and mean square test errors. 

a 02 /30 2 Vo ')'0 CI C2 MS ERROR 
2 0.1 0 0 0.0001 0.0001 0.00505 
2 10 0 0 0.0001 0.0001 0.00503 
2 100 0 0 0.0001 0.0001 0.00502 

6 Conclusions 

We presented a general methodology for estimating, jointly, the noise variance, pa­
rameters and number of parameters of an RBF model. In adopting a Bayesian 
model and the reversible jump MCMC algorithm to perform the necessary integra­
tions, we demonstrated that the method is very accurate. Contrary to previous 
reported results, our experiments indicate that our model is robust with respect 
to the specification of the prior. In addition, we obtained more parsimonious RBF 
networks and better approximation errors than the ones previously reported in the 
literature. There are many avenues for further research. These include estimating 
the type of basis functions, performing input variable selection, considering other 
noise models and extending the framework to sequential scenarios. A possible so­
lution to the first problem can be formulated using the reversible jump MCMC 
framework. Variable selection schemes can also be implemented via the reversible 
jump MCMC algorithm. We are presently working on a sequential version of the 
algorithm that allows us to perform model selection in non-stationary environments. 
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