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Abstract 

Psychophysical and physiological evidence shows that sound local­
ization of acoustic signals is strongly influenced by their synchrony 
with visual signals. This effect, known as ventriloquism, is at work 
when sound coming from the side of a TV set feels as if it were 
coming from the mouth of the actors. The ventriloquism effect 
suggests that there is important information about sound location 
encoded in the synchrony between the audio and video signals. In 
spite of this evidence, audiovisual synchrony is rarely used as a 
source of information in computer vision tasks. In this paper we 
explore the use of audio visual synchrony to locate sound sources. 
We developed a system that searches for regions of the visual land­
scape that correlate highly with the acoustic signals and tags them 
as likely to contain an acoustic source. We discuss our experience 
implementing the system, present results on a speaker localization 
task and discuss potential applications of the approach. 

Introd uction 

We present a method for locating sound sources by sampling regions of an im­
age that correlate in time with the auditory signal. Our approach is inspired by 
psychophysical and physiological evidence suggesting that audio-visual contingen­
cies play an important role in the localization of sound sources: sounds seem to 
emanate from visual stimuli that are synchronized with the sound. This effect be­
comes particularly noticeable when the perceived source of the sound is known to 
be false, as in the case of a ventriloquist's dummy, or a television screen. This 
phenomenon is known in the psychophysical community as the ventriloquism effect, 
defined as a mislocation of sounds toward their apparent visual source. The effect is 
robust in a wide variety of conditions, and has been found to be strongly dependent 
on the degree of "synchrony" between the auditory and visual signals (Driver, 1996; 
Bertelson, Vroomen, Wiegeraad & de Gelder, 1994). 
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The ventriloquism effect is in fact less speech-specific than first thought. For exam­
ple the effect is not disrupted by an upside-down lip signal (Bertelson, Vroomen, 
Wiegeraad & de Gelder, 1994) and is just as strong when the lip signals are re­
placed by light flashes that are synchronized with amplitude peaks in the audio 
signal (Radeau & Bertelson, 1977). The crucial aspect here is correlation between 
visual and auditory intensity over time. When the light flashes are not synchronized 
the effect disappears. 

The ventriloquism effect is strong enough to produce an enduring localization bias, 
known as the ventriloquism aftereffect. Over time, experience with spatially offset 
auditory-visual stimuli causes a persistent shift in subsequent auditory localization. 
Exposure to audio-visual stimuli offset from each other by only 8 degrees of azimuth 
for 20-30 minutes is sufficient to shift auditory localization by the same amount. A 
corresponding shift in neural processing has been detected in macaque monkeys as 
early as primary auditory cortex(Recanzone, 1998). In barn owls a misalignment 
of visual and auditory stimuli during development causes the realignment of the 
auditory and visual maps in the optic tectum(Zheng & Knudsen, 1999; Stryker, 
1999; Feldman & Knudsen, 1997). 

The strength of the psychophysical and physiological evidence suggests that audio­
visual contingency may be used as an important source of information that is cur­
rently underutilized in computer vision tasks. Visual and auditory sensor systems 
carry information about the same events in the world, and this information must 
be combined correctly in order for a useful interaction of the two modalities. Au­
diovisual contingency can be exploited to help determine which signals in different 
modalities share a common origin. The benefits are two-fold: the two signals can 
help localize each other, and once paired can help interpret each other. To this 
effect we developed a system to localize speakers using input from a camera and 
a single microphone. The approach is based on searching for regions of the image 
which are "synchronized" with the acoustic signal. 

Measuring Synchrony 

The concept of audio-visual synchrony is not well formalized in the psychophysical 
literature, so for a working definition we interpret synchrony as the degree of mutual 
information between audio and spatially localized video signals. Ultimately it is a 
causal relationship that we are often interested in, but causes 'can only be inferred 
from effects such as synchrony. Let a(t) E IRn be a vector describing the acoustic 
signal at time t. The components of a(t) could be cepstral coefficients, pitch mea­
surements, or the outputs of a filter bank. Let v(x, y, t) E IRm be a vector describing 
the visual signal at time t, pixel (x,y). The components ofv(x,y,t) could represent 
Gabor energy coefficients, RGB color values, etc. 

Consider now a set of s audio and visual vectors S = (a(tl), v(x, y, tl»l=k-s-l,. .. ,k 
sampled at times tk-s-l,'" ,tk and at spatial coordinates (x, y). Given this set 
of vectors our goal is to provide a number that describes the temporal contingency 
between audio and video at time tk' The approach we take is to consider each 
vector in S as an independent sample from a joint multivariate Gaussian process 
(A(tk), V(x, y, tk» and define audio-visual synchrony at time tk as the estimate of 
the mutual information between the audio and visual components of the process. 

Let A(tk) ,..., Nn(ltA(tk), ~A(tk»' and V(x,y, tk) ,..., Nm(ltv(x, y, t), ~v(x,y, tk)), 
where It represents means and ~ covariance matrices. Let A(tk) and V(x, y, tk) 
be jointly Gaussian, i.e., (A(tk), V(x, y, tk» ,..., Nn+m(ltA,V (x, y, tk), ~A,V(X, y, tk)' 
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The mutual information between A(x, y, tk) and V(tk) can be shown to be as follows 

[(A(tk); V(x, y, tk)) = H(A(tk)) + H(V(x, y, tk)) - H(A(tk), V(x, y, tk)) 
1 1 
"2log(27re)nIEA(tk)1 + "2log(27re)mIEv(x, y, tk)1 (1) 

1 
-"2log(27re)n+mIEA,v(x,y, tk)1 

11 IEA(tk)IIEv(x,y,tk)1 - og "'-----:-::::---'--'-'--;----'-----'-::-:--':"':' 
2 IEA,V(X,y,tk)I' 

In the special case that n = m = 1, then 

(2) 

(3) 

(4) 

where p(x, y, tk) is the Pearson correlation coefficient between A(tk) and V(x, y, tk)' 

For each triple (x, y, tk) we estimate the mutual information between A( tk) and 
V(x, y, tk) by considering each element of S as an independent sample from the 
random vector (A(tk), V(x, y, tk))' This amounts to computing estimates of the 
joint covariance matrix EA,V (x, y, tk). For example the estimate of the covariance 
between the ith audio component and the jLh video component would be as follows 

1 8-1 

SAi,v; (x, y, tk) = s _ 1 I)ai(tk-l) - ai(tk))(Vj(X,y, tk-l) - Vj (x, y, tk)), (5) 
1=0 

where 

(6) 

(7) 

(8) 

These simple covariance estimates can be computed recursively in constant time 
with respect to the number of timepoints. The independent treatment of pixels 
would lend well to a parallel implementation. 

To measure performance, a secondary system produces a single estimate of the 
auditory location, for use with a database of labeled solitary audiovisual sources. 
Unfortunately there are many ways of producing such estimates so it becomes dif­
ficult to separate performance of the measure from the underlying system. The 
model used here is a centroid computation on the mutual information estimates, 
with some enhancements to aid tracking and reduce background noise. 

Implementation Issues 

A real time system was prototyped using a QuickCam on the Linux operating 
system and then ported to NT as a DirectShow filter. l'his platform provides input 
from real-time audio and video capture hardware as well as from static movie files. 
The video output could also be rendered live or compressed and saved in a movie 
file. The implementation was challenging in that it turns out to be rather difficult 
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(b) J is talking. 

Figure 1: Normalized audio and visual intensity across sequences of frames in which 
a sequence of four numbers is spoken. The top trace is the contour of the acoustic 
energy from one of two speakers, M or J, and the bottom trace is the contour of 
intensity values for a single pixel, (147,100), near the mouth of J. 

to process precisely time-synchronized audio and video on a serial machine in real 
time. Multiple threads are required to read from the peripheral audio and visual 
devices. By the time the audio and visual streams reach the AV filter module, they 
are quite separate and asynchronous. The separately threaded auditory and visual 
packet streams must be synchronized, buffered, and finally matched and aligned by 
time-stamps before they can finally be processed. It is interesting that successful 
biologial audiovisual systems employ a parallel architecture and thus avoid this 
problem. 

Results 

To obtain a performance baseline we first tried the simplest possible approach: 
A single audio and visual feature per location: n = m = 1, v(x, y, t) E IR is the 
intensity of pixel (x, y) at time t, and a(t) E IR is the average acoustic energy over the 
interval [t - 6.t, tJ, where 6.t = 1/30 msec , the sampling period for the NTSC video 
signal. Figure 1 illustrates the time course of these signals for a non-synchronous 
and a synchronous pair of acoustic energy and pixel intensity. Notice in particular 
that in the synchonous pair, 1 (b), where the sound and pixel values come from the 
same speaker, the relationship between the signals changes over time. There are 
regions of positive and negative covariance strung together in succession. Clearly 
the relationship over the entire sequence is far from linear. However over shorter 
time periods a linear relationship looks like a better approximation. Our window 
size of 16 samples (Le., s = 16 in 5 coincides approximately with this time-scale. 
Perhaps by averaging over many small windows we can capture on a larger scale 
what would be lost to the same method applied with a larger window. Of course 
there is a trade-off in the time-scale between sensitivity to spurious transients, and 
the response time of the system. 

We applied this mutual information measure to all the pixels in a movie, in the 
spirit of the perceptual maps of the brain. The result is a changing topographic 
map of audiovisual mutual information. Figure 2 illustrates two snapshots in which 



Audio Vision: Using Audio-Visual Synchrony to Locate Sounds 817 

(a) Frame 206: M (at left) is talking. (b) Frame 104: J (at right) is talking. 

Figure 2: Estimated mutual information between pixel intensity and audio intensity 
(bright areas indicate greater mutual information) overlaid on stills from the video 
where one person is in mid-utterance. 

different parts of the face are synchronous (possibly with different sign) with the 
sound they take part in producing. It is interesting that the synchrony is shared 
by some parts, such as the eyes, that do not directly contribute to the sound, but 
contribute to the communication nonetheless. ___ 

To estimate the position of the speaker we computed a centroid were each point was 
weighted by the estimated mutual information between the correpsonding pixel and 
the audio signal. At each time step the mutual information was estimated using 16 
past frames (Le., s = 16) In order to reduce the intrusion of spurious correlations 
from competing targets, once a target has been found, we employ a Gaussian influ­
ence function. (Goodall, 1983) The influence function reduces the weight given to 
mutual information from locations far from the current centroid when computing 
the next centroid. To allow for the speedy disengagement from a dwindling source 
of mutual information we set a threshold on the mutual information. Measurements 
under the threshold are treated as zero. This threshold also reduces the effects of 
unwanted background noise, such as camera and microphone jitter. 

A Lx L x 8(1og(1 - f} (x , y, t)))'I/;(X, Sx(t - 1)) 
Sx(t) = Y A 

Lx L y 8(log(1- p2(X,y,t)))'I/;(x, Sx(t -1)) 
(9) 

where Sx(t) represents the estimate of the x coordinate for the position of the 
speaker at time t. 8(.) is the thresholding function, and 'I/;(x, Sx(t - 1)) is the 
influence function , which depends upon the 'position x of the pixel being sampled 
and the prior estimate Sx(t-1). p2(X, y, t) is the estimate of the correlation between 
the intensity in pixel (x , y) and the acoustic enery, when using the 16 past video 
frames. -~ log(l- p2(x, y, t)) is the corresponding estimate of mutual information 
(the factor, -~ cancels out in the quotient after adjusting the threshold function 
accordingly. ) 

We tried the approach on a movie of two people (M and J) taking turns while saying 
random digits. Figure 3 shows the estimates of the actual positions of the speaker 
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as a function of time. The estimates clearly provide information that could be used 
to localize the speaker, especially in combination with other approaches (e.g., flesh 
detection) . 
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Figure 3: Estimated and actual position of speaker at each frame for six hundred 
frames. The sources, M and J, took turns uttering a series of four digits, for three 
turns each. The actual positions and alternation times were measured by hand from 
the video recording 

Conclusions 

We have presented exploratory work on a system for localizing sound sources on 
a video signal by tagging regions of the image that are correlated in time with 
the auditory signal. The approach was motivated by the wealth of evidence in 
the psychophysical and physiological literature showing that sound localization is 
strongly influenced by synchrony with the visual signal. We presented a measure 
of local synchrony based on modeling the audio-visual signal as a non-stationary 
Gaussian process. We developed a general software tool that accepts as inputs all 
major video and audio file formats as well as direct input from a video camera. We 
tested the tool on a speaker localization task with very encouraging results. The 
approach could have practical applications for localizing sound sources in situations 
where where acoustic stereo cues are inexistent or unreliable. For example the 
approach could be used to help localize the actor talking in a video scene and put 
closed-captioned text near the audio source. The approach could also be used to 
guide a camera in teleconferencing applications. 

While the results reported here are very encouraging, more work needs to be done 
before practical applications are developed. For example we need to investigate 
more sophisticated methods for processing the audio and video signals. At this 
point we use average energy to represent the video and thus changes in the fun­
damental frequency that do not affect the average energy would not be captured 
by our model. Similarly local video decompositions, like spatio-temporal Gabor 
filtering, or approaches designed to enhance the lip regions may be helpful. The 
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changing symmetry observed between audio and video signals might be addressed 
rectifying or squaring the normalized signals and derivatives. Finally, relaxing the 
Gaussian constraints in our measure of audio-visual contingency may help improve 
performance. While the work shown here is exploratory at this point, the approach 
is very promising: It emphasizes the idea of machine perception as a multimodal 
process it is backed by psychophysical evidence, and when combined with other ap­
proaches it may help improve robustness in tasks such as localization and separation 
of sound sources. 
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