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Abstract 

Spatial information comes in two forms: direct spatial information (for 
example, retinal position) and indirect temporal contiguity information, 
since objects encountered sequentially are in general spatially close. The 
acquisition of spatial information by a neural network is investigated 
here. Given a spatial layout of several objects, networks are trained on a 
prediction task. Networks using temporal sequences with no direct spa­
tial information are found to develop internal representations that show 
distances correlated with distances in the external layout. The influence 
of spatial information is analyzed by providing direct spatial information 
to the system during training that is either consistent with the layout or 
inconsistent with it. This approach allows examination of the relative 
contributions of spatial and temporal contiguity. 

1 Introduction 

Spatial information is acquired by a process of exploration that is fundamentally tempo­
ral, whether it be on a small scale, such as scanning a picture, or on a larger one, such as 
physically navigating through a building, a neighborhood, or a city. Continuous scanning 
of an environment causes locations that are spatially close to have a tendency to occur in 
temporal proximity to one another. Thus, a temporal associative mechanism (such as a 
Hebb rule) can be used in conjunction with continuous exploration to capture the spatial 
structure of the environment [1]. However, the actual process of building a cognitive map 
need not rely solely on temporal associations, since some spatial information is encoded in 
the sensory array (position on the retina and proprioceptive feedback). Laboratory studies 
show different types of interaction between the relative contributions of temporal and spa­
tial contiguities to the formation of an internal representation of space. While Clayton and 
Habibi's [2] series of recognition priming experiments indicates that priming is controlled 
only by temporal associations, in the work of McNamara et al. [3] priming in recogni­
tion is observed only when space and time are both contiguous. In addition, Curiel and 
Radvansky's [4] work shows that the effects of spatial and temporal contiguity depend on 
whether location or identity information is emphasized during learning. Moreover, other 
experiments ([3]) also show how the effects clearly depend on the task and can be quite 
different if an explicitly spatial task is used (e.g., additive effects in location judgments). 
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Figure 1: Network architectures: temporal-only network (left); spatio-temporal network 
with spatial units part of the input representation (center); spatio-temporal network with 
spatial units part of the output representation (right) . 

2 Network architectures 

The goal of the work presented in this paper is to study the structure of the internal rep­
resentations that emerge from the integration of temporal and spatial associations. An 
encoder-like network architecture is used (see Figure 1), with a set of N input units and a 
set of N output units representing N nodes on a 2-dimensional graph. A set of H units is 
used for the hidden layer. To include space in the learning process, additional spatial units 
are included in the network architecture. These units provide a representation of the spatial 
information directly available during the learning/scanning process. In the simulations de­
scribed in this paper, two units are used and are chosen to represent the (x, y) coordinates of 
the nodes in the graph. The spatial units can be included as part of the input representation 
or as part of the output representation (see Figure 1, center and right panels): both choices 
are used in the experiments, to investigate whether the spatial information could better ben­
efit training as an input or as an output [5]. In the second case, the relative contribution of 
the spatial information can be directly manipulated by introducing weighting factors in the 
cost function being minimized. A two-term cost function is used, with a cross-entropy term 
for the N label units and a squared error term for the 2 coordinate units, 

ri indicates the actual output of unit i and ti its desired output. The relative influence of 
the spatial information is controlled by the coefficients A and B. 

3 Learning tasks 

The left panel of Figure 2 shows an example of the type of layout used; the effective 
layout used in the study consists of N = 28 nodes. For each node, a set of neighboring 
nodes is defined, chosen on the basis of how an observer might scan the layout to learn the 
node labels and their (spatial) relationships; in Figure 2, the neighborhood relationships are 
represented by lines connecting neighboring nodes. From any node in the layout, the only 
allowed transitions are those to a neighbor, thus defining the set of node pairs used to train 
the network (66 pairs out of C(28, 2) = 378 possible pairs). In addition, the probability 
of occurrence of a particular transition is computed as a function of the distance to the 
corresponding neighbor. It is then possible to generate a sequence of visits to the network 
nodes, aimed at replicating the scanning process of a human observer studying the layout. 



Spatiotemporal Contiguity Effects on Spatial Information Acquisition 19 

knife cup 

coin eraser 

eraser button 

Figure 2: Example of a layout (left) and its permuted version (right). Links represent 
allowed transitions. A larger layout of 28 units was used in the simulations. 

The basic learning task is similar to the grammar learning task of Servan-Schreiber et al. 
[6] and to the neighborhood mapping task described in [1] and is used to associate each of 
the N nodes on the graph and its (x, y) coordinates with the probability distribution of the 
transitions to its neighboring nodes. The mapping can be learned directly, by associating 
each node with the probability distribution of the transitions to all its neighbors: in this 
case, batch learning is used as the method of choice for learning the mapping. On the 
other hand, the mapping can be learned indirectly, by associating each node with itself 
and one of its neighbors, with online learning being the method of choice in this case; 
the neighbor chosen at each iteration is defined by the sequence of visits generated on 
the basis of the transition probabilities. Batch learning was chosen because it generally 
converges more smoothly and more quickly than online learning and gives qualitatively 
similar results. While the task and network architecture described in [1] allowed only 
for temporal association learning, in this study both temporal and spatial associations are 
learned simultaneously, thanks to the presence of the spatial units. However, the temporal­
only (T-only) case, which has no spatial units, is included in the simulations performed 
for this study, to provide a benchmark for the evaluation of the results obtained with the 
spatio-temporal (S-T) networks. 

The task described above allows the network to learn neighborhood relationships for which 
spatial and temporal associations provide consistent information, that is, nodes experienced 
contiguously in time (as defined by the sequence) are also contiguous in space (being spa­
tial neighbors). To tease apart the relative contributions of space and time, the task is kept 
the same, but the data employed for training the network is modified: the same layout is 
used to generate the temporal sequence, but the x , y coordinates of the nodes are randomly 
permuted (see right panel of Figure 2). If the permuted layout is then scanned following the 
same sequence of node visits used in the original version, the net effect is that the temporal 
associations remain the same, but the spatial associations change so that temporally neigh­
boring nodes can now be spatially close or distant: the spatial associations are no longer 
consistent with the temporal associations. As Figure 4 illustrates, the training pairs (filled 
circles) all correspond to short distances in the original layout, but can have a distance 
anywhere in the allowable range in the permuted layout. Since the temporal and spatial 
distances were consistent in the original layout, the original spatial distance can be used 
as an indicator of temporal distance and Figure 4 can be interpreted as a plot of temporal 
distance vs. spatial distance for the permuted layout. 

The simulations described in the following include three experimental conditions: temporal 
only (no direct spatial information available); space and time consistent (the spatial coor­
dinates and the temporal sequence are from the same layout); space and time inconsistent 
(the spatial coordinates and the temporal sequence are from different layouts). 
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Hidden unit representations are compared using Euclidean distance (cosine and inner prod­
uct measures give consistent results); the internal representation distances are also used to 
compute their correlation with Euclidean distances between nodes in the layout (original 
and permuted). The correlations increase with the number of hidden units for values of 
H between 5 and 10 and then gradually taper off for values greater than 10. The results 
presented in the remainder of the paper all pertain to networks trained with H = 20 and 
with hidden units using a tanh transfer function; all the results pertaining to S-T networks 
refer to networks with 2 spatial output units and cost function coefficients A = 0.625 and 
B = 6.25. 

4 Results 

Figure 3 provides a combined view of the results from all three experiments. The left panel 
illustrates the evolution of the correlation between internal representation distances and 
layout (original and permuted) distances. The right panel shows the distributions of the 
correlations at the end of training (1000 epochs). The first general result is that, when spa­
tial information is available and consistent with the temporal information (original layout), 
the correlation between hidden unit distances and layout distances is consistently better 
than the correlation obtained in the case of temporal associations alone. The second gen­
eral result is that, when spatial information is available but not consistent with the temporal 
information (permuted layout), the correlation between hidden unit distances and original 
layout distances (which represent temporal distances) is similar to that obtained in the case 
of temporal associations alone, except for the initial transient. When the correlation is com­
puted with respect to the permuted layout distances, its value peaks early during training 
and then decreases rapidly, to reach an asymptotic value well below the other three cases. 
This behavior is illustrated in the box plots in the right panel of Figure 3, which report the 
distribution of correlation values at the end of training. 

4.1 Temporal-only vs. spatio-temporal 

As a first step in this study, the effects of adding spatial information to the basic temporal 
associations used to train the network can be examined. Since the learning task is the same 
for both the T-only and the S-T networks except for the absence or presence of spatial 
information during training, the differences observed can be attributed to the additional 
spatial information available to the S-T networks. The higher correlation between internal 
representation distances and original layout distances obtained when spatial information is 
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Figure 3: Evolution of correlation during training (0 - 1000 epochs) (left). Distributions of 
correlations at the end of training (1000 epochs) (right). 
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Figure 4: Distances in the original layout 
(x) vs_ distances in the permuted layout 
(y)_ The 66 training pairs are identified by 
filled circles_ 
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Figure 5: Similarities (Euclidean distances) 
between internal representations developed 
by a S-T network (after 300 epochs)_ Figure 
4 projects the data points onto the x, y plane_ 

available (see Figure 3) is apparent also when the evolution of the internal representations 
is examined_ As Figure 6 illustrates, the presence of spatial information results in better 
generalization for the pattern pairs outside the training set While the distances between 
training pairs are mapped to similar distances in hidden unit space for both the T-only and 
the S-T networks, the T-only network tends to cluster the non-training pairs into a narrow 
band of distances in hidden unit space. In the case of the S-T network instead, the hidden 
unit distances between non-training pairs are spread out over a wider range and tend to 
reflect the original layout distances. 

4.2 Permuted layout 

As described above, with the permuted layout it is possible to decouple the spatial and 
temporal contributions and therefore study the effects of each. A comprehensive view of 
the results at a particular point during training (300 epochs) is presented in Figure 5, where 
the x, y plane represents temporal distance vs. spatial distance (see also Figure 4) and the z 
axis represents the similarity between hidden unit representations. The figure also includes 
a quadratic regression surface fitted to the data points. The coefficients in the equation of 
the surface provide a quantitative measure of the relative contributions of spatial (ds) and 
temporal distances (dT ) to the similarity between hidden unit representations (dHU ): 

(2) 

In general, after the transient observed in early training (see Figure 3), the largest and most 
significant coefficients are found for dT and (dT?, indicating a stronger dependence of 
dHU on temporal distance than on spatial distance. 

The results illustrated in Figure 5 represent the situation at a particular point during training 
(300 epochs). Similar plots can be generated for different points during training, to study 
the evolution of the internal representations. A different view of the evolution process is 
provided by Figure 7, in which the data points are projected onto the x,Z plane (top panel) 
and the y,z plane (bottom panel) at four different times during training. In the top panel, 
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Figure 6: Internal representation distances vs. original layout distances: S-T network (top) 
vs. T-only network (bottom). The training pairs are identified by filled circles. The presence 
of spatial information results in better generalization for the pairs outside the training set. 

the internal representation distances are plotted as a function of temporal distance (i.e., the 
spatial distance from the original layout), while in the bottom panel they are plotted as a 
function of spatial distance (from the permuted layout). The higher asymptotic correlation 
between internal representation distances and temporal distances, as opposed to spatial 
distances (see Figure 3), is apparent also from the examination of the evolutionary plots, 
which show an asymptotic behavior with respect to temporal distances (see Figure 7, top 
panel) very similar to the T-only case (see Figure 6, bottom panel) . 

5 Discussion 

The first general conclusion that can be drawn from the examination of the results described 
in the previous section is that, when the spatial information is available and consistent with 
the temporal information (original layout), the similarity structure of the hidden unit rep­
resentations is closer to the structure of the original layout than that obtained by using 
temporal associations alone. The second general conclusion is that, when the spatial in­
formation is available but not consistent with the temporal information (permuted layout), 
the similarity structure of the hidden unit representations seems to correspond to temporal 
more than spatial proximity. Figures 5 and 7 both indicate that temporal associations take 
precedence over spatial associations. This result is in agreement with the results described 
in [1], showing how temporal associations (plus some high-level constraints) significantly 
contribute to the internal representation of global spatial information. However, spatial in­
formation certainly is very beneficial to the (temporal) acquisition of a layout, as proven by 
the results obtained with the S-T network vs. the T-only network. 

In terms of the model presented in this paper, the results illustrated in Figures 5 and 7 can 
be compared with the experimental data reported for recognition priming ([2], [3], [4]), 
with distance between internal representations corresponding to reaction time. The results 
of our model indicate that distances in both the spatially far and spatially close condition 
appear to be consistently shorter for the training pairs (temporally close) than for the non­
training pairs (temporally distant), highlighting a strong temporal effect consistent with the 
data reported in [2] and [4] (for spatially far pairs) and in [3] (only for the spatially close 
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Figure 7: Internal representation distances vs. temporal distances (top) and vs. spatial 
distances (bottom) for a S-T network (permuted layout). The training pairs are identified 
by filled circles. The asymptotic behavior with respect to temporal distances (top panel) is 
similar to the T-only condition. The bottom panel indicates a weak dependence on spatial 
distances. 

case). For the training pairs (temporally close), slightly shorter distances are obtained for 
spatially close pairs vs. spatially far pairs; this result does not provide support for the 
experimental data reported in either [3] (strong spatial effect) or [2] (no spatial effect). 
For the non-training pairs (temporally distant), long distances are found throughout, with 
no strong dependence on spatial distance; this effect is consistent with all the reported 
experimental data. Further simulations and statistical analyses are necessary for a more 
conclusive comparison with the experimental data. 
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