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Abstract 

In this paper we will treat input selection for a radial basis function 
(RBF) like classifier within a Bayesian framework. We approximate 
the a-posteriori distribution over both model coefficients and input 
subsets by samples drawn with Gibbs updates and reversible jump 
moves. Using some public datasets, we compare the classification 
accuracy of the method with a conventional ARD scheme. These 
datasets are also used to infer the a-posteriori probabilities of dif­
ferent input subsets. 

1 Introduction 

Methods that aim to determine relevance of inputs have always interested re­
searchers in various communities. Classical feature subset selection techniques, as 
reviewed in [1], use search algorithms and evaluation criteria to determine one opti­
mal subset. Although these approaches can improve classification accuracy, they do 
not explore different equally probable subsets. Automatic relevance determination 
(ARD) is another approach which determines relevance of inputs. ARD is due to [6] 
who uses Bayesian techniques, where hierarchical priors penalize irrelevant inputs. 

Our approach is also "Bayesian": Relevance of inputs is measured by a probability 
distribution over all possible feature subsets. This probability measure is determined 
by the Bayesian evidence of the corresponding models. The general idea was already 
used in [7] for variable selection in linear regression mo.dels. Though our interest 
is different as we select inputs for a nonlinear classification model. We want an 
approximation of the true distribution over all different subsets. As the number of 
subsets grows exponentially with the total number of inputs, we can not calculate 
Bayesian model evidence directly. We need a method that samples efficiently across 
different dimensional parameter spaces. The most general method that can do this 
is the reversible jump Markov chain Monte Carlo sampler (reversible jump Me) 
recently proposed in [4]. The approach was successfully applied by [8] to determine 
a probability distribution in a mixture density model with variable number of kernels 
and in [5] to sample from the posterior of RBF regression networks with variable 
number of kernels. A Markov chain that switches between different input subsets is 
useful for two tasks: Counting how often a particular subset was visited gives us a 
relevance measure of the corresponding inputs; For classification, we approximate 
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the integral over input sets and coefficients by summation over samples from the 
Markov chain. 

The next sections will show how to implement such a reversible jump MC and apply 
the proposed algorithm to classification and input evaluation using some public 
datasets. Though the approach could not improve the MLP-ARD scheme from 
[6] in terms of classification accuracy, we still think that it is interesting: We can 
assess the importance of different feature subsets which is different than importance 
of single features as estimated by ARD. 

2 Methods 

The classifier used in this paper is a RBF like model. Inference is performed within 
a Bayesian framework. When conditioning on one set of inputs , the posterior over 
model parameters is already multimodal. Therefore we resort to Markov chain 
Monte Carlo (MCMC) -sampling techniques to approximate the desired posterior 
over both model coefficients and feature subsets. In the next subsections we will 
propose an appropriate architecture for the classifier and a hybrid sampler for model 
inference. This hybrid sampler consists of two parts: We use Gibbs updates ([2]) to 
sample when conditioning on a particular set of inputs and reversible jump moves 
that carry out dimension switching updates. 

2.1 The classifier 

I~ order to allow input relevance determination by Bayesian model selection , the 
classifier needs at least one coefficient that is associated with each input: Roughly 
speaking, the probability of each model is proportional to the likelihood of the most 
probable coefficients, weighted by their posterior width divided by their prior width. 
The first factor always increases when using more coefficients (or input features). 
The second will decrease the more inputs we use and together this gives a peak 
for the most probable model. A classifier that satisfies these constraints is the so 
called classification in the sampling paradigm. We model class conditional densities 
and together with class priors express posterior probabilities for classes. In neural 
network literature this approach was first proposed in [10). We use a model that 
allows for overlapping class conditional densities: 

D K 

p(~lk) = L WkdP(~I~) , p(~) = L PkP(~lk) (1) 
d=l k=l 

Using Pk for the J{ class priors and p(~lk) for the class conditional densities, (1) 
expresses posterior probabj,Jities for classes as P(kl~) = PkP(~lk)/p(~). We choose 
the component densities, p(~IcI> d), to be Gaussian with restricted parametrisation: 
Each kernel is a multivariate normal distribution with a mean and a diagonal co­
variance matrix. For all Gaussian kernels together, we get 2 * D * I parameters, with 
I denoting the current input dimension and D denoting the number of kernels. 
Apart from kernel coefficients, cI>d , (1) has D coefficients per class, Wkd, indicat­
ing the prior kernel allocation probabilities and J{ class priors. Model (1) allows to 
treat labels of patterns as missing data and use labeled as well as unlabeled data for 
model inference. In this case training is carried out using the likelihood of observing 
inputs and targets: 

p(T, X18) = rrr;=lrr;::=lPkPk(~nk Ifu)rr~=lp(bnI8) , (2) 

where T denotes labeled and X unlabeled training data. In (2) 8 k are all coefficients 
the k-th class conditional density depends on. We further use 8 for all model 
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coefficients together, nk as number of samples belonging to class k and m as index 
for unlabeled samples. To make Gibbs updates possible, we further introduce two 
latent allocation variables. The first one, d, indicates the kernel number each sample 
was generated from, the second one is the unobserved class label c, introduced for 
unlabeled data. Typical approaches for training models like (1), e.g. [3] and [9], 
use the EM algorithm, which is closely related to the Gibbs sampler introduce in 
the next subsection. 

2.2 Fixed dimension sampling 

In this subsection we will formulate Gibbs updates for sampling from the posterior 
when conditioning on a fixed set of inputs. In order to allow sampling from the full 
conditional, we have to choose priors over coefficients from their conjugate family: 

• Each component mean, !!!d, is given a Gaussian prior: !!!d '" Nd({di). 

• The inverse variance of input i and kernel d gets a Gamma prior: 
u;;l '" r( a, ,Bi). 

• All d variances of input i have a common hyperparameter, ,Bi, that has 
itself a Gamma hyperprior: ,Bi ,...., r(g, hi). 

• The mixing coefficients, ~, get a Dirichlet prior: ~ '" 1J (6w , ... , 6w ). 

• Class priors, P, also get a Dirichlet prior: P '" 1J(6p , ... ,6p). 

The quantitative settings are similar to those used in [8]: Values for a are between 
1 and 2, g is usually between 0.2 and 1 and hi is typically between 1/ Rr and 10/ Rr, 
with Ri denoting the i'th input range. The mean gets a Gaussian prior centered 
at the midpoint, e, with diagonal inverse covariance matrix ~, with "'ii = 1/ Rr. 
The prior counts dw and 6p are set to 1 to give the corresponding probabilities 
non-informative proper Dirichlet priors. 

The Gibbs sampler uses updates from the full conditional distributions in (3). For 
notational convenience we use ~ for the parameters that determine class condi­
tional densities. We use m as index over unlabeled data and Cm as latent class label. 
The index for all data is n, dn are the latent kernel allocations and nd the number 
of samples allocated by the d-th component. One distribution does not occur in 
the prior specification. That is Mn(l, ... ) which is a multinomial-one distribution. 
Finally we need some counters: ml ... mK are the counts per class and mlk .. mDk 

count kernel allocations of class-k-patterns. The full conditional of the d-th kernel 
variances and the hyper parameter ,Bi contain i as index of the input dimension. 
There we express each u;J separately. In the expression of the d-th kernel mean, 

I 
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illd, we use .lGt to denote the entire covariance matrix. 

p(~J .. ) 

p(~I···) 
p(PI···) 

p(illdl···) 

( { PkP(~mlfu) }) 
Mn 1, I:k PkP(~mlfu)' k = l..K 
Mn (1, { WtndP(~nl~) ,d= l..D}) 

I:, Wt,.dP(~nl~) 

r (9 + Da. hi + ;; ud,! ) 

1) (ow + mlk, ... ,ow + mDk) 

1) (op + ml, ... , op + mK) 

N ((nd~l + ~)-l(ndVdl~ + ~S), (ndVd 1 + ~)-l) 

r (a + ~d, f3i + ~ L (~n,i -llid,i)2) 
i£,. Vnld,.=d 

2.3 Moving between different input subsets 

641 

(3) 

The core part of this sampler are reversible jump updates, where we move between 
different feature subsets. The probability of a feature subset will be determined by 
the corresponding Bayesian model evidence and by an additional prior over number 
of inputs. In accordance with [7J, we use the truncated Poisson prior: 

p(I) = 1/ ( I jax ) c ~~ , where c is a constant and Imax the total nr. of inputs. 

Reversible jump updates are generalizations of conventional Metropolis-Hastings 
updates, where moves are bijections (x, u) H (x', u'). For a thorough treatment we 
refer to [4J. In order to switch subsets efficiently, we will use two different types of 
moves. The first consist of a step where we add one input chosen at random and a 
matching step that removes one randomly chosen input . A second move exchanges 
two inputs which allows "tunneling" through low likelihood areas. 

Adding an input, we have to increase the dimension of all kernel means and diagonal 
covariances. These coefficients are drawn from their priors. In addition the move 
proposes new allocation probabilities in a semi deterministic way. Assuming the 
ordering, Wk,d ~ Wk,d+1: 

op Beta(ba , bb + 1) 

Vd ~ D/2 { W~'D+l-d = Wk,D+l-d + Wk ,dOp 
w~ , d = wk ,d(1 - op) 

(4) 

The matching step proposes removing a randomly chosen input. Removing corre­
sponding kernel coefficients is again combined with a semi deterministic proposal 
of new allocation probabilities, which is exactly symmetric to the proposal in (4). 
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Table 1: Summary of experiments 

Data avg(#) max(#) RBF (%,n a ) MLP (%,nb) 
Ionosphere 4.3 9 (91.5,11) 95.5,4 

Pima 4 7 (78.9,111 79.8,8 
Wine 4.4 8 (100, 01 96.8,2 

We accept births with probability: 

n, min( 1, lh. rt x p(;(;/) G, J2,; r g exp ( - 05 ;" (I'd - <d)' ) 

x (~':) f g (.,.~ -')"-1 exp( -Ii' "'~-') 
x dm / (I + 1) x 1 

bm/(Imax - I) (~, V27i) D TID exp ( -0.5Ih(J.l~ - ed)2) 

1 
x D ). (5) 

(Ii;)) TID (0"~-2)a-l exp( _(3'0"~-2) 

The first line in (5) are the likelihood and prior ratio. The prior ratio results from 
the difference in input dimension, which affects the kernel means and the prior over 
number of inputs. The first term of the proposal ratio is from proposing to add 
or remove one input. The second term is the proposal density of the additional 
kernel components which cancels with the corresponding term in the prior ratio. 
Due to symmetry of the proposal (4) and its reverse in a death move, there is no 
contribution from changing allocation probabilities. Death moves are accepted with 
probability ad = l/ab. 

The second type of move is an exchange move. We select a new input and one 
from the model inputs and propose new mean coefficients. This gives the following 
acceptance probability: 

min( 1, lh. ratio x 
(*,J2;) D TID exp ( -0.5"Jb(J.ld - ed)2) 

(~, J2;) D ITD exp ( -0.5 Ih(J.ld - ed)2) 

cm/ I TID N(J.ldl···) ) x---:-:--'-----..,..x 
cm/(Imax - I) TID N(J.l~I···) . 

(6) 

The first line of (6) are again likelihood and prior ratio. For exchange moves, the 
prior ratio is just the ratio from different values in the kernel means. The first term 
in the proposal ratio is from proposing to exchange an input. The second term is the 
proposal density of new kernel mean components. The last part is from proposing 
new allocation probabilities. 

3 Experiments 

Although the method can be used with labeled and unlabeled data, the following 
experiments were performed using only labeled data. For all experiments we set 
a = 2 and 9 = 0.2. The first two data sets are from the VCI repositoryl. We use 

1 Available at http://www.ics.uci.edu/ mlearn/MLRepository.html. 
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the Ionosphere data which has 33 inputs, 175 training and 176 test samples. For 
this experiment we use 6 kernels and set h = 0.5. The second data is the wine 
recognition data which provides 13 inputs, 62 training and 63 test samples. For this 
data, we use 3 kernels and set h = 0.28. The third experiment is performed with 
the Pima data provided by B. D. Ripley2. For this one we use 3 kernels and set 
h = 0.16. 

For all experiments we draw 15000 samples from the posterior over coefficients and 
input subsets. We discard the first 5000 samples as burn in and use the rest for 
predictions. Classification accuracy, is compared with an MLP classifier using R. 
Neals hybrid Monte Carlo sampling with ARD priors on inputs. These experiments 
use 25 hidden units. Table 1 contains further details: avg( #) is the average and 
max(#) the maximal number of inputs used by the hybrid sampler; RBF (%, na) is 
the classification accuracy of the hybrid sampler and the number of errors it made 
that were not made by the ARD-MLP; MLP(%, nb) is the same for the ARD-MLP. 
We compare classifiers by testing (na, nb) against the null hypothesis that this is an 
observation from a Binomial Bn(na +nb , 0.5) distribution. This reveals that neither 
difference is significant. Although we could not improve classification accuracy on 
these data, this does not really matter because ARD methods usually lead to high 
generalization accuracy and we can compete. 

The real benefit from using the hybrid sampler is that we can infer probabilities 
telling us how much different subsets contribute to an explanation of the target 
variables. Figure 3 shows the occurrence probabilities of feature subsets and fea­
tures. Note that table 1 has also details about how many features were used in 
these problems. Especially the results from Ionosphere data are interesting as on 
average we use only 4.3 out of 33 input features. For ionosphere and wine data the 
Markov chain visits about 500 different input subsets within 10000 samples. For 
the Pima data the number is about 60 and an order of magnitude smaller. 

4 Discussion 

In this paper we have discussed a hybrid sampler that uses Gibbs updates and 
reversible jump moves to approximate the a-posteriori distribution over parameters 
and input subsets in nonlinear classification problems. The classification accuracy 
of the method could compete with R . Neals MLP-ARD implementation. However 
the real advantage of the method is that it provides us with a relevance measure of 
feature subsets. This allows to infer the optimal number of inputs and how many 
different explanations the data provides. 
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Figure 1: Probabilities of inputs and input subsets measuring their relevance. 
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