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Abstract 

In this paper, we use mutual information to characterize the dis­
tributions of phonetic and speaker/channel information in a time­
frequency space. The mutual information (MI) between the pho­
netic label and one feature, and the joint mutual information (JMI) 
between the phonetic label and two or three features are estimated . 
The Miller's bias formulas for entropy and mutual information es­
timates are extended to include higher order terms. The MI and 
the JMI for speaker/channel recognition are also estimated. The 
results are complementary to those for phonetic classification. Our 
results show how the phonetic information is locally spread and 
how the speaker/channel information is globally spread in time 
and frequency. 

1 Introduction 

Speech signals typically carry information about number of target sources such 
as linguistic message, speaker identity, and environment in which the speech was 
produced. In most realistic applications of speech technology, only one or a few in­
formation targets are important. For example, one may be interested in identifying 
the message in the signal regardless of the speaker or the environments in which 
the speech was produced, or the identification of the speaker is needed regardless 
of the words the targeted speaker is saying. Thus, not all components of the signal 
may be equally relevant for a decoding of the targeted information in the signal. 

The speech research community has at its disposal rather large speech databases 
which are mainly used for training and testing automatic speech recognition (ASR) 
systems. There have been relatively few efforts to date to use such databases 
for deriving reusable knowledge about speech and speech communication processes 
which could be used for improvements of ASR technology. In this paper we apply 
information-theoretic approaches to study a large hand-labeled data set of fluent 
speech to learn about the information structure of the speech signal including the 
distribution of speech information in frequency and in time. 

Based on the labeled data set, we analyze the relevancy of the features for phonetic 
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classifications and speaker/channel variability. The features in this data set are 
labeled with respect to underlying phonetic classes and files from which the features 
come from. The phoneme labels relate to the linguistic message in the signal, and 
the file labels carry the information about speakers and communication channels 
(each file contains speech of a single speaker transmitted through one telephone 
channel). Thus, phoneme and file labels are two target variables for statistical 
inference. The phoneme labels take 19 different values corresponding to 19 broad 
phoneme categories in the OGI Stories database [2]. The file labels take different 
values representing different speakers in the OGI Stories database. 

The relevancy of a set of features is measured by the joint mutual information (JMI) 
between the features and a target variable. The phoneme target variable represents 
in our case the linguistic message. The file target variable represents both different 
speakers and different telephone channels. The joint mutual information between 
a target variable and the features quantifies the relevancy of the features for that 
target variable. 

Mutual information measure the statistical dependence between random variables. 
Morris et al (1993) used mutual information to find the critical points of informa­
tion for classifying French Vowel-Plosive-Vowel utterances. Bilmes(1998) showed 
recently that the information appears to be spread over relatively long tempo­
ral spans. While Bilmes used mutual information between two variables on non­
labeled data to reveal the mutual dependencies between the components of the 
spectral energies in time and frequency, we focused on joint mutual information 
between the phoneme labels or file labels and one, two or three feature variables 
in the time-frequency plane[7, 6] and used this concept to gain insight into how 
information about phonemes and speaker/channel variability is distributed in the 
time-frequency plane. 

2 Data Set and Preprocessing 

The data set used in this paper is 3-hour phonetically labeled telephone speech, a 
subset of the English portion (Stories) ofthe OGI multi-lingual database [2] contain­
ing approximately 50 seconds of extemporaneous speech from each of 210 different 
speakers. The speech data is labeled by a variable Y taking 19 values represent­
ing 19 most often occurring phoneme categories. The average phoneme duration is 
about 65 ms and the number of phoneme instances is 6542l. 

Acoustic features X (fk, t) for the experiments are derived from a short-time anal­
ysis of the speech signal with a 20 ms analysis window (Hamming) at the frame t 
advanced in 10 ms steps. The logarithmic energy at a frequency fk is computed 
from the squared magnitude FFT using a critical-band spaced (log-like in the fre­
quency variable) weighting function in a manner similar to that of the computation 
of Perceptual Linear Prediction coefficients [3]. In particular, the 5-th, 8-th and 12-
th bands are centered around 0.5, 1 and 2 kHz respectively. Each feature X(fk, t) is 
labeled by a phoneme label YP(t) and a file label Y J (t). We use mutual information 
to measure the relevancy of X(/k, t - d) across all frequencies fk and in a context 
window - D ::; d ::; + D for the phoneme classification and the speaker/channel 
identification. 

3 Estimation of MI and Bias Correction 

In this paper, we only consider the mutual information (MI) between discrete ran­
dom variables. The phoneme label and the file label are discrete random variables. 
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However, the feature variables are bounded continuous variables. To obtain the 
quantized features, we divide the maximum range of the observed features into 
cells of equal volume so that we can use histogram to estimate mutual information 
defined by 

" p(x, y) 
I(Xi Y) = L...Jp(x, y) log2 (x) ( )' 

x,y P P Y 

If X and Yare jointly Gaussian, then I(Xi Y) = -~ In(1 - p2) where p is the 
correlation coefficient between X and Y. However, for speech data the feature vari­
ables are generally non-Gaussian and target variables are categorical type variables. 
Correlations involving a categorical variable are meaningless. 

The MI can also be written as 

I(XiY) = H(X) + H(Y) - H(X, Y) 
= H(Y) - H(YIX) = H(X) - H(XIY) (1) 

where H (Y IX) is a conditional entropy defined by 
-

H(YIX) = - L:p(x) L:p(Ylx) log2P(ylx). 
x y 

The two equations in (1) mean that the MI is the uncertainty reduction about Y 
give X or the uncertainty reduction about X give Y. 

Based on the histogram, H(X) is estimated by 

H(X) = - L: ni log2 ni 
. n n 
~ 

where ni is the number of data points in the i-th cell and n is the data size. And 
I(X i Y) is estimated by 

i(Xi Y) = H(X) + H(Y) - H(X, Y). 

Miller(1954)[4] has shown that H(X) is an underestimate of H(X) and i(Xi Y) is 
an overestimate of I (X i Y) . The biases are 

A r - 1 1 
E[H(X)] - H(X) = - 2In(2)n + O( n2 ) (2) 

E[i(X;Y)]-I(X;Y) = (r-l)(c-l) +O(~) 
2In(2)n n2 

(3) 

where rand c are the number of cells for X and Y respectively. 

Interestingly, the first order terms in (2) and (3) do not depend on the probability 
distribution. After using these formulas to correct the'estimates, the new estimates 
have the same variances as the old estimates but with reduced biases. However, 
these formulas break down when rand n are of the same order. Extending Miller's 
approach, we find a high order correction for the bias. Let {pd be the probability 
distribution of X, then 

E[H(X)] - H(X) 
r-l 1 

= - 2In(2)n + 6In(2)n2 (S( {Pi}) - 3r + 2) 

1 1 
--(S({pd) - 1) + 0(-) 

4n3 n 4 
(4) 
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The last two terms in the bias (4) depend on the unknown probabilities {pd. In 
practice they are approximated by the relative frequency estimates. 

Similarly, we can find the bias formulas of the high order terms O(nl:2) and O(n\) 
for the MI estimate. 

When X is evenly distributed, Pi = 1/r, so S( {pd) = r2 and 

, r-1 1 2 1 2 1 
E[H(X)]- H(X) = - 2ln(2)n + 6ln(2)n2 (r - 3r + 2) - 4n3 (r -1) + O(n4). 

Theoretically S( {Pi}) has no upper bound when one of the probabilities is close to 
zero. However, in practice it is hard to collect a sample to estimate a very small 
probability. For this reason, we assume that Pi is either zero or greater than 6/r 
where 6 > 0 is a small constant does not depend on nor r . Under this assumption 
S( {pd) ::; r2/6 and the amplitUde of the last term in (4) is less than 4!3 (r2 /6 - 1) . 

4 MI in Speech for Phonetic Classification 

The three hour telephone speech in the OGI database gives us a sample size greater 
than 1 million, n = 1050000. To estimate the mutual information between three 
features and a target variable, we need to estimate the entropy H(Xl' X 2, X3, Y). 
Take B = 20 as the number of bins for each feature variable and C = 19 is the 
number of phoneme categories. Then the total number of cells is r = B3 * C. After 
a constant adjustment, assuming 6 = 1, the bias is 

O( :2) = 6ln(12)n2 (r2 - 3r + 2) = 0.005(bits). 

It is shown in Fig. 1(a) that X(/4,t) and X(/5,t) are most relevant features for 
phonetic classification. From Fig. 1(b), at 5 Bark the MI spread around the current 
frame is 200 ms. 

Given one feature Xl, the information gain due to the second feature is the difference 

I(Xl,X2;Y)- I(Xl;Y) = I(X2;YIXd 

where I(X2; YIXd is called the information gain of X 2 given Xl. It is a conditional 
mutual information defined by 

It is shown in Fig. 1(c)-(d) that given X(/5, t) across different bands the maxi­
mum information gain is achieved by X(/g, t), and within 5 Bark band the max­
imum information gain is achieved by X (/5 , t - 5). The mutual informations 
I(X(/4' t), X(/k, t + d); Y) for k = 1, ... ,15, k ¥ 4, and d = ±1, ... ,±1O, the infor­
mation gain from the second feature in the vicinity of the first one, are shown in 
Fig. 2. The asymmetric distribution of the MI around the neighborhood (/5, d = 0) 
indicates that the phonetic information is spread asymmetrically through time but 
localized in about 200 ms around the current frame. 

Based on our data set, we have H(Y) = 3.96 (bits). The JMI for three frequency 
features and three temporal features are shown in Fig. 1{e)-{f). Based on these 
estimates, the three frequency features give 28% reduction in uncertainty about Y 
while the three temporal features give 19% reduction. 
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Figure 1: (a) MIs of individual features in different bands. (b) MIs of individual 
feature at 5 Bark with different lOms-frame shifts. (c) JMIs of two features: at 
5 Bark and in other bands. (d) JMIs of two features: current frame and shifted 
frames, both at 5 Bark. (e) JMIs of three features: at 5 Bark, 9 Bark and in other 
bands. The dashed line is th~ JMI level achieved by the two features X (15, t) and 
X (19, t). (f) JMIs of three features: current frame, 5th frame before current frame, 
and other shifted frames , all at 5 Bark. The dashed line is the JMI level achieved 
by X (15 , t) and X (15 , t - 5) . 

The size of our data set is n = 1050000. Therefore, we can reliably estimate the joint 
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MI between three features and the phoneme label. However, to estimate the JMI 
for more than 3 features we have the problem of curse of dimensionality since for k 
features, r = Bk * C is exponential increasing. For example, when k = 4, B = 20, 
and C = 19, the second order bias is O(1/n2) = 2.02 (bits) which is too high to be 
ignored. To extend our approach beyond the current three-feature level, we need 
either to enlarge our data set or to find an alternative to the histogram based MI 
estimation. 
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Figure 2: The 3-D plot of joint mutual information around X(!4 , t). An asymmetric 
distribution is apparent especially around 4 Bark and 5 Bark. 
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Figure 3: (a) The MI between one frequency feature and the file label. (b) The JMI 
between two features and the file identity labels. 

5 MI in Speech for Speaker/Channel Recognition 

The linguistic variability expressed by phoneme labels is not the only variability 
present in speech. We use the mutual information to evaluate relevance to other 
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sources of variabilities such as speaker/channel variability. Taking the file label as 
a target variable , we estimated the mutual information for one and two features. 

It is shown in Fig. 3(a) that the most relevant features are in the very low frequency 
channels, which in our case of telephone speech carry only very little speech infor­
mation. Fig. 3(b) shows that the second most relevant feature for speaker/channel 
recognition is at least 150 ms apart from the first most relevant feature. These re­
sults suggest that the information about the speaker and the communication channel 
is not localized in time. These results are complementary to the results for phonetic 
classification shown in Fig. 1 (a) and (d) . 

6 CONCLUSIONS 

Our results have shown that the information theoretic analysis of labeled speech 
data is feasible and useful for obtaining reusable knowledge about speech/channel 
variabilities. The joint mutual information of two features for phonetic classification 
is asymmetric around the current frame. We also estimated the joint mutual infor­
mation between the phoneme labels and three feature variables . The uncertainty 
about the phonetic classification is reduced by adding more features. The maximum 
uncertainty reductions due to three frequency features and three temporal features 
are 28% and 19% respectively. 

The mutual informations of one and two features for speaker/channel recognition 
are estimated. The results show that the most relevant features are in the very low 
frequency bands. At 1 Bark and 5 Bark, the second most relevant temporal feature 
for speaker/channel recognition is at least 150 ms apart from the first most relevant 
feature. These results suggest that the information about the speaker and the 
communication channel is not localized in time. These results are complementary 
to the results for phonetic classification for which the mutual information is generally 
localized with some time spread. 
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