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The speech waveform can be modelled as a piecewise-stationary linear 
stochastic state space system, and its parameters can be estimated using 
an expectation-maximisation (EM) algorithm. One problem is the ini­
tialisation of the EM algorithm. Standard initialisation schemes can lead 
to poor formant trajectories. But these trajectories however are impor­
tant for vowel intelligibility. The aim of this paper is to investigate the 
suitability of subspace identification methods to initialise EM. 
The paper compares the subspace state space system identification 
(4SID) method with the EM algorithm. The 4SID and EM methods are 
similar in that they both estimate a state sequence (but using Kalman fil­
ters and Kalman smoothers respectively), and then estimate parameters 
(but using least-squares and maximum likelihood respectively). The sim­
ilarity of 4SID and EM motivates the use of 4SID to initialise EM. Also, 
4SID is non-iterative and requires no initialisation, whereas EM is itera­
tive and requires initialisation. However 4SID is sub-optimal compared 
to EM in a probabilistic sense. During experiments on real speech, 4SID 
methods compare favourably with conventional initialisation techniques. 
They produce smoother formant trajectories, have greater frequency res­
olution, and produce higher likelihoods. 

1 Work done while in Cambridge Engineering Dept., UK. 
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1 Introduction 

This paper models speech using a stochastic state space model, where model parameters 
are estimated using the expectation-maximisation (EM) technique. One problem is the 
initialisation of the EM algorithm. Standard initialisation schemes can lead to poor formant 
trajectories. These trajectories are however important for vowel intelligibility. This paper 
investigates the suitability of subspace state space system identification (4SIO) techniques 
[10,11], which are popular in system identification, for EM initialisation. 

Speech is split into fixed-length, overlapping frames. Overlap encourages temporally 
smoother parameter transitions between frames. Oue to the slow non-stationary behaviour 
of speech, each frame of speech is assumed quasi-stationary and represented as a linear 
time-invariant stochastic state space (SS) model. 

Xt+l = AXt + Wt 

Yt CXt + Vt 

(1) 

(2) 

The system order is p. Xt E ~pX l is the state vector. A E ~px p and C E ~l xp are 
system parameters. The output Yt E ~ is the speech signal at the microphone. Process 
and observation noises are modelled as white zero-mean Gaussian stationary noises Wt E 
~px l f"V N(O, Q) and Vt E ~ f"V N(O, R) respectively. The problem definition is to 
estimate parameters e = (A, c, Q, R) from speech Yt only. 

The structure of the paper is as follows . The theory section describes EM and 4SIO applied 
to the parameter estimation of the above SS model. The similarity of 4SIO and EM moti­
vates the use of 4SID to initialise EM. Experiments on real speech then compare 4SIO with 
more conventional initialisation methods. The discussion then compares 4SIO with EM. 

2 Theory 

2.1 The Expectation-Maximisation (EM) Technique 

Given a sequence of N observations Yl:N of a signal such as speech, the maximum like­
lihood estimate for the parameters is 9ML = arg maxep(Yl:N!e) . EM breaks the 
maximisation of this potentially difficult likelihood function down into an iterative max­
imisation of a simpler likelihood function, generating a new estimate ek each iteration. 
Rewriting P(Yl:N!e) in terms of a hidden state sequence Xl:N, and taking expectations 
over P(Xl:N!Yl:N, ek) 

10gp(Yl:N!e) 

10gp(Yl:N!e) 

= 10gp(Xl:N,yl :N!e) -logp(Xl:N!Yl :N,e) 

Ek[logp(Xl:N, Yl:N!e)] - E k[logp(Xl :N!Yl:N, e)] 

(3) 

(4) 

Iterative maximisation of the first expectation in equation 4 guarantees an increase in 
10gp(Yl:N!e). 

(5) 

This converges to a local or global maximum depending on the initial parameter estimate 
eo. Refer to [8] for more details. EM can thus be applied to the stochastic state space 



798 G. Smith, J. F. G. d. Freitas, T. Robinson and M Niranjan 

model of equations 1 and 2 to determine optimal parameters e. An explanation is given 
in [3] . The EM algorithm applied to the SS system consists of two stages per iteration. 
Firstly, given current parameter estimates, states are estimated using a Kalman smoother. 
Secondly, given these states, new parameters are estimated by maximising the expected 
log likelihood function. We employ the Rauch-Tung-Striebel formulation of the Kalman 
smoother [2]. 

2.2 The State-Space Model 

Equations 1 and 2 can be cast in block matrix form and are termed the state sequence and 
block output equations respectively [10]. Note that the use of blocking and fixed-length 
signals applies restrictions to the general model in section 1. i > P is the block size. 

Xi+I,i+j 

YI!i 

AiXl,j + arWI!i 

riXI,j + HrWI!i + VI!i 

(6) 
(7) 

Xi+I,i+j is a state sequence matrix; its columns are the state vectors from time (i + 1) to 
(i+j). XI,j is similarly defined. Y W is a Hankel matrix of outputs from time 1 to (i+j-1). 
W and V are similarly defined. a i is a reversed extended controllability-type matrix, r i 
is the extended observability matrix and Hi is a Toeplitz matrix. These are all defined 
below where IPxp is an identity matrix. 

XI,j 
def 

[Xl X2 X3 ••. Xj] 

[ci, 1 
r·~ 

~ -

a w def [Ai- I A i- 2 ... I] 
~ 

[ y, 
Y2 Yj 

1 [ c1-, :J 
Y ~f Y2 Y3 Yj+1 H~~f 

0 
l!i - : , 

Yi Yi+l Yi+j-l C 

A sequence of outputs can be separated into two block output equations containing past 

and future outputs denoted with subscriptsp and! respectively. With Yp dg YI!i, Y, dg 
de, de, 

Y i+1!2i and similarly for W and V, and Xp = XI,j and X, = Xi+I ,i+j, past and 
future are related by the equations 

AiXp +arWp 

riXp + HiWp + Vp 

rix, + HiW, + V, 

2.3 Subspace State Space System Identification (4SID) Techniques 

(8) 

(9) 
(10) 

Comments throughout this section on 4SIO are largely taken from the work of Van Over­
schee and Oe Moor [10]. 4SIO methods are related to instrumental variable (IV) methods 
[11]. 4SIO algorithms are composed of two stages. Stage one involves the low-rank ap­
proximation and estimation of the extended observability matrix directly from the output 
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data. For example, consider the future output block equation 10. Y, undergoes an orthogo­
nal projection onto the row space ofY p' This is denoted by Y, /'J p = Y, YJ (Y p YJ) ty p, 

where t is the Moore-Penrose inverse. 

r iX, /'Jp + HfW, /'Jp + V, /'Jp 

rix,/'Jp (11) 

Stage two involves estimation of system parameters. The singular value decomposition of 
Y, /'Jp allows the observability and state sequence matrices to be estimated to within a 
similarity transform from the column and row spaces respectively. From these two matri­
ces, system parameters (A, c, Q, R) can be determined by least-squares. 

There are two interesting comments. Firstly, the orthogonal projection from stage one co­
incides with a minimum error between true data Y, and its linear prediction from Y p in 
the Frobenius norm. Greater flexibility is obtained by weighting the projection with ma­
trices WI and W 2 and analysing this: WI (YJi'J p )W2 • 4SID and IV methods differ 
with respect to these weighting matrices. Weighting is similar to prefiltering the observa­
tions prior to analysis to preferentially weight some frequency domain, as is common in 
identification theory [6]. Secondly, the state estimates from stage two can be considered as 
outputs from a parallel bank of Kalman filters, each one estimating a state from the previous 
i observations, and initialised using zero conditions. 

The particular subspace algorithm and software used in this paper is the sto-pos algorithm 
as detailed in [10]. Although this algorithm introduces a small bias into some of the pa­
rameter estimates, it guarantees positive realness of the covariance sequence, which in turn 
guarantees the definition of a forward innovations model. 

3 Experiments 

Experiments are conducted on the phrase "in arithmetic", spoken by an adult male. The 
speech waveform is obtained from the Eurom 0 database [4] and sampled at 16 kHz. The 
speech waveform is divided into fixed-length, overlapping frames, the mean is subtracted 
and then a hamming window is applied. Frames are 15 ms in duration, shifted 7.5 ms 
each frame. Speech is modelled as detailed in section 1. All models are order 8. A frame 
is assumed silent and no analysis done when the mean energy per sample is less than an 
empirically defined threshold. 

For the EM algorithm, a modified version of the software in [3] is used. The initial state 
vector and covariance matrix are set to zero and identity respectively, and 50 iterations are 
applied. Q is updated by taking its diagonal only in the M-step for numerical stability (see 
[3]). 

In these experiments, three schemes are compared at initialising parameters for the EM 
algorithm, that is the estimation of 9 0 . These schemes are compared in terms of their 
formant trajectories relative to the spectrogram and their likelihoods. The three schemes 
are 

• 4SID. This is the subspace method in section 2.3 with block size 16 . 

• ARMA. This estimates 9 0 using the customised Matlab armax function!, which 
models the speech waveform as an autoregressive moving average (ARMA) pro­
cess, with order 8 polynomials. 

I armax minimises a robustified quadratic prediction error criterion using an iterative Gauss­
Newton algorithm, initialised using a four-stage least-squares instrumental variables algorithm [7]. 
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• AR(l). This uses a simplistic method, and models the speech waveform as a 
first order autoregressive (AR) process with some randomness introduced into the 
estimation. It still initialises all parameters fully2. 

Results are shown in Figures 1 and 2. Figure 1 shows the speech waveform, spectrogram 
and formant trajectories for EM with all three initialisation schemes. Here formant frequen­
cies are derived from the phase of the positive phase eigenvalues of A after 50 iterations of 
EM. Comparison with the spectrogram shows that for this order 8 model, 4SID-EM pro­
duces best formant trajectories. Figure 2 shows mean average plots of likelihood against 
EM iteration number for each initialisation scheme. 4SID-EM gives greater likelihoods 
than ARMA-EM and AR(l)-EM. The difference in formant trajectories between subspace­
EM and ARMA-EM despite the high likelihoods, demonstrates the multi-modality of the 
likelihood function. For AR(l)-EM, a few frames were not estimated due to numerical 
instability. 

4 Discussion 

Both the 4SID and EM algorithms employ similar methodologies: states are first estimated 
using a Kalman device, and then these states are used to estimate system parameters ac­
cording to similar criteria. However in EM, states are estimated using past, present and 
future observations with a Kalman smoother; system parameters are then estimated using 
maximum likelihood (ML). Whereas in 4SID, states are estimated using the previous i 
observations only with non-steady state Kalman filters. System parameters are then esti­
mated using least-squares (LS) subject to a positive realness constraint for the covariance 
sequence. Refer also to [5] for a similar comparison. 

4SID algorithms are sub-optimal for three reasons. Firstly, states are estimated using only 
partial observations sequences. Secondly, the LS criterion is only an approximation to the 
ML criterion. Thirdly, the positive realness constraint introduces bias. A positive realness 
constraint is necessary due to a finite amount of data and any lacking in the SS model. For 
this reason, 4SID methods are used to initialise rather than replace EM in these experi­
ments. 

4SID methods also have some advantages. Firstly, they are linear and non-iterative, and 
do not suffer from the disadvantages typical of iterative algorithms (including EM) such 
as sensitivity to initial conditions, convergence to local minima, and the definition of con­
vergence criteria. Secondly, they require little prior parameterisation except the definition 
of the system order, which can be determined in situ from observation of the singular val­
ues of the orthogonal projection. Thirdly, the use of the SVD gives numerical robustness 
to the algorithms. Fourthly, they have higher frequency resolution than prediction error 
minimisation methods such as ARMA and AR [1]. 

5 Conclusions 

4SID methods can be used to initialise EM giving better formant tracks, higher likelihoods 
and better frequency resolution than more conventional initialisation methods. In the future 
we hope to compare 4SID methods with EM in a principled probabilistic manner, investi­
gate weighting matrices further, and apply these methods to speech enhancement. Further 
work is done by Smith et al. in [9], and similar work done by Grivel et aI. in [5]. 
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Figure 1: (a) Time waveform and (b) spectrogram for "in arithmetic". Formant trajectories 
are estimated using EM and a SS model initialised with three different schemes: (d) 4SID, 
(e) ARMA and (t) AR(l). 
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Figure 2: Likelihood convergence plots for EM and the SS model initialised with 
4SID [- -], ARMA [-] and AR(I) [-.] for the experiments in Figure 1. Plots are the mean 
average over all frames where analysed. 
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