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Abstract 

Local linear regression performs very well in many low-dimensional 
forecasting problems. In high-dimensional spaces, its performance 
typically decays due to the well-known "curse-of-dimensionality". 
A possible way to approach this problem is by varying the "shape" 
of the weighting kernel. In this work we suggest a new, data-driven 
method to estimating the optimal kernel shape. Experiments us­
ing an artificially generated data set and data from the UC Irvine 
repository show the benefits of kernel shaping. 

1 Introduction 

Local linear regression has attracted considerable attention in both statistical and 
machine learning literature as a flexible tool for nonparametric regression analysis 
[Cle79, FG96, AMS97]. Like most statistical smoothing approaches, local modeling 
suffers from the so-called "curse-of-dimensionality", the well-known fact that the 
proportion of the training data that lie in a fixed-radius neighborhood of a point 
decreases to zero at an exponential rate with increasing dimension of the input 
space. Due to this problem, the bandwidth of a weighting kernel must be chosen 
very big so as to contain a reasonable sample fraction . As a result, the estimates 
produced are typically highly biased. One possible way to reduce the bias of local 
linear estimates is to vary the "shape" of the weighting kernel. In this work, we 
suggest a method for estimating the optimal kernel shape using the training data. 
For this purpose, we parameterize the kernel in terms of a suitable "shape matrix" , 
L, and minimize the mean squared forecasting error with respect to L. For such an 
approach to be meaningful, the "size" of the weighting kernel must be constrained 
during the minimization to avoid overfitting. We propose a new, entropy-based 
measure of the kernel size as a constraint. By analogy to the nearest neighbor 
approach to bandwidth selection [FG96], the suggested measure is adaptive with 
regard to the local data density. In addition, it leads to an efficient gradient descent 
algorithm for the computation of the optimal kernel shape. Experiments using an 
artificially generated data set and data from the UC Irvine repository show that 
kernel shaping can improve the performance of local linear estimates substantially. 

The remainder of this work is organized as follows. In Section 2 we briefly review 



Optimal Kernel Shapes for Local Linear Regression 541 

local linear models and introduce our notation. In Section 3 we formulate an objec­
tive function for kernel shaping, and in Section 4 we discuss entropic neighborhoods. 
Section 5 describes our experimental results and Section 6 presents conclusions. 

2 Local Linear Models 

Consider a nonlinear regression problem where a continuous response y E JR is to 
be predicted based on a d-dimensional predictor x E JRd. Let D == {(Xt, Yt), t = 
1, . .. ,T} denote a set of training data. To estimate the conditional expectation 
f(xo) == E[ylxo], we consider the local linear expansion f(x) ~ 0:0 + (x - xo),/3o in 
the neighborhood of Xo. In detail, we minimize the weighted least squares criterion 

T 

C(o:,/3;xo) == ~)Yt - 0: - (Xt - xo)'/3)2k(xt,xo) (1) 
t=1 

to determine estimates of the parameters 0:0 and /30. Here k(xt, xo) is a non-negative 
weighting kernel that assigns more weight to residuals in the neighborhood of Xo 
than to residuals distant from Xo. In multivariate problems, a standard way of 
defining k(xt, xo) is by applying a univariate, non-negative "mother kernel" </>(z) to 
the distance measure Ilxt - xolln == J(Xt - xo)'O(Xt - xo): 

k(xt, xo) == : (1lxt - xolln) . 
ES=1 </> (1lxs - xolln) 

(2) 

Here 0 is a positive definite d x d matrix determining the relative importance 
assigned to different directions of the input space. For example, if </>(z) is a stan­
dard normal density, k(xt, xo) is a normalized multivariate Gaussian with mean 
Xo and covariance matrix 0-1 . Note that k(xt, xo) is normalized so as to satisfy 
E;=1 k(xt, xo) = 1. Even though this restriction is not relevant directly with re­
gard to the estimation of 0:0 and /30, it will be needed in our discussion of entropic 
neighborhoods in Section 4. 

Using the shorthand notation i(xo, 0) == (&0, ~b)" the solution of the minimization 
problem (1) may be written conveniently as 

i(xo,O) = (X'W X)-1 X'WY, (3) 

where X is the T x (d + 1) design matrix with rows (1, x~ - xb)" Y is the vector of 
response values, and W is a TxT diagonal matrix with entries Wt,t = k(xt, xo). 
The resulting local linear fit at Xo using the inverse covariance matrix 0 is simply 
!(xo; 0) == &0. Obviously, !(xo; 0) depends on 0 through the definition of the 
weighting kernel (2). In the discussion below, our focus is on choices of 0 that lead 
to favorable estimates of the unknown function value f(xo). 

3 Kernel Shaping 

The local linear estimates resulting from different choices of 0 vary considerably 
in practice. A common strategy is to choose 0 proportional to the inverse sample 
covariance matrix. The remaining problem of finding the optimal scaling factor is 
equivalent to the problem of bandwidth selection in univariate smoothing [FG96, 
BBB99]. For example, the bandwidth is frequently chosen as a function of the 
distance between Xo and its kth nearest neighbor in practical applications [FG96]. 
In this paper, we take a different viewpoint and argue that optimizing the "shape" 
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of the weighting kernel is at least as important as optimizing the bandwidth. More 
specifically, for a fixed "volume" of the weighting kernel, the bias of the estimate 
can be reduced drastically by shrinking the kernel in directions of large nonlinear 
variation of f (x), and stretching it in directions of small nonlinear variation. This 
idea is illustrated using the example shown in Figure 1. The plotted function 
is sigmoidal along an index vector K, and constant in directions orthogonal to K,. 

Therefore, a "shaped" weighting kernel is shrunk in the direction K, and stretched 
orthogonally to K" minimizing the exposure of the kernel to the nonlinear variation. 

Figure 1: Left: Example of a single index model of the form y = g(X'K) with K = (1,1) 
and g(z) = tanh(3z). Right: The contours of g(z) are straight lines orthogonal to K. 

To distinguish formally the metric and the bandwidth of the weighting kernel, we 
rewrite 0 as follows: 

0== A' (LL' + I). (4) 

Here A corresponds to the inverse bandwidth, and L may be interpreted as a metric­
or shape-matrix. Below we suggest an algorithm which is designed to minimize 
the bias with respect to the kernel metric. Clearly, for such an approach to be 
meaningful, we need to restrict the "volume" of the weighting kernel; otherwise, the 
bias of the estimate could be minimized trivially by choosing a zero bandwidth. For 
example, we might define A contingent on L so as to satisfy 101 = c for some constant 
c. A serious disadvantage of this idea is that, by contrast to the nearest neighbor 
approach, 101 is independent of the design. As a more appropriate alternative, we 
define A in terms of a measure of the number of neighboring observations. In detail, 
we fix the volume of k(xt, xo) in terms of the "entropy" of the weighting kernel. 
Then, we choose A so as to satisfy the resulting entropy constraint. Given this 
definition of the bandwidth, we determine the metric of k (Xt, xo) by minimizing the 
mean squared prediction error: 

T 

C(L; D) == I)Yt - f(Xt; 0»2 (5) 
t=l 

with respect to L. In this way, we obtain an approximation of the optimal kernel 
shape because the expectation of C(L; D) differs from the bias only by a variance 
term which is independent of L. Details of the entropic neighborhood criterion and 
of the numerical minimization procedure are described next. 

4 Entropic Neighborhoods 

We mentioned previously that, for a given shape matrix L, we choose the bandwidth 
parameter A in (4) so as to fulfill a volume constraint on the weighting kernel. For 
this purpose, we interpret the kernel weights k(xt, xo) as probabilities. In particular, 
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as k(Xt, xo) > 0 and E t k(xt, xo) = 1 by definition (2), we can formulate the local 
entropy of k(xt, xo): 

T 

H(O) == - I: k(xt, xo) log k(xt, xo). (6) 
t=l 

The entropy of a probability distribution is typically thought of as a measure of 
uncertainty. In the context of the weighting kernel k(xt, xo), H(O) can be used 
as a smooth measure of the "size" of the neighborhood that is used for averaging. 
To see this, note that in the extreme case where equal weights are placed on all 
observations in D, the entropy is maximized. At the other extreme, if the single 
nearest neighbor of Xo is assigned the entire weight of one, the entropy attains its 
minimum value zero. Thus, fixing the entropy at a constant value c is similar to 
fixing the number k in the nearest neighbor approach. Besides justifying (6), the 
correspondence between k and c can also be used to derive a more intuitive volume 
parameter than the entropy level c. We specify c in terms of a hypothetical weighting 
kernel that places equal weight on the k nearest neighbors of Xo and zero weight 
on the remaining observations. Note that the entropy of this hypothetical kernel 
is log k. Thus, it is natural to characterize the size of an entropic neighborhood in 
terms of k, and then to determine A by numerically solving the nonlinear equation 
system (for details, see [OH99]) 

H(O) = logk. (7) 

More precisely, we report the number of neighbors in terms of the equivalent sample 
fraction p == kiT to further intuition. This idea is illustrated in Figure 2 using a 
one- and a two-dimensional example. The equivalent sample fractions are p = 30% 
and p = 50%, respectively. Note that in both cases the weighting kernel is wider 
in regions with few observations, and narrower in regions with many observations. 
As a consequence, the number of observations within contours of equal weighting 
remains approximately constant across the input space. 

" 
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Figure 2: Left: Univariate weighting kernel k(-, xo) evaluated at Xo = 0.3 and Xo = 0.7 
based on a sample data set of 100 observations (indicated by the bars at the bottom) . Right: 
Multivariate weighting kernel k(·, xo) based on a sample data set of 200 observations. The 
two ellipsoids correspond to 95% contours of a weighting kernel evaluated at (0.3,0.3)' and 
(0.6,0.6)' . 

To summarize, we define the value of A by fixing the equivalent sample fraction 
parameter p, and subsequently minimize the prediction error on the training set 
with respect to the shape matrix L. Note that we allow for the possibility that 
L may be of reduced rank I :::; d as a means of controlling the number of free 
parameters. As a minimization procedure, we use a variant of gradient descent that 
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accounts for the entropy constraint. In particular, our algorithm relies on the fact 
that (7) is differentiable with respect to L. Due to space limitations, the interested 
reader is referred to [OH99] for a formal derivation of the involved gradients and 
for a detailed description of the optimization procedure. 

5 Experiments 

In this section we compare kernel shaping to standard local linear regression using 
a fixed spherical kernel in two examples. First, we evaluate the performance using 
a simple toy problem which allows us to estimate confidence intervals for the pre­
diction accuracy using Monte Carlo simulation. Second, we investigate a data set 
from the machine learning data base at UC Irvine [BKM98]. 

5.1 Mexican Hat Function 

In our first example, we employ Monte Carlo simulation to evaluate the performance 
of kernel shaping in a five-dimensional regression problem. For this purpose, 20 sets 
of 500 data points each are generated independently according to the model 

y = coS(SJxI + x~) . exp( -(xi + x~)). (8) 

Here the predictor variables Xl, ... ,X5 are drawn according to a five-dimensional 
standard normal distribution. Note that, even though the regression is carried out 
in a five-dimensional predictor space, y is really only a function of the variables 
Xl and X2 . In particular, as dimensions two through five do not contribute any 
information with regard to the value of y, kernel shaping should effectively discard 
these variables. Note also that there is no noise in this example. 

Figure 3: Left: "True" Mexican hat function. Middle: Local linear estimate using a 
spherical kernel (p = 2%). Right: Local linear estimate using kernel shaping (p = 2%) . 
Both estimates are based on a training set consisting of 500 data points. 

Figure 3 shows a plot of the true function, the spherical estimate, and the estimate 
using kernel shaping as functions of Xl and X2. The true function has the familiar 
"Mexican hat" shape, which is recovered by the estimates to different degrees. We 
evaluate the local linear estimates for values of the equivalent neighborhood fraction 
parameter p in the range from 1% to 15%. Note that, to warrant a fair comparison, 
we used the entropic neighborhood also to determine the bandwith of the spherical 
estimate. For each value of p, 20 models are estimated using the 20 artificially 
generated training sets, and subsequently their performance is evaluated on the 
training set and on the test set of 31 x 31 grid points shown in Figure 3. The shape 
matrix L has maximal rank 1 = 5 in this experiment. Our results for local linear 
regression using the spherical kernel and kernel shaping are summarized in Table 
1. Performance is measured in terms of the mean R2-value of the 20 models, and 
standard deviations are reported in parenthesis. 
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Algorithm 
spherical kernel 
spherical kernel 
spherical kernel 
spherical kernel 
spherical kernel 
kernel shaping 
kernel shaping 
kernel shaping 
kernel shaping 

p=l% 
p=2% 
p=5% 

p = 10% 
p= 20% 
p= 1% 
p=2% 
p=5% 
p= 15% 

Training R2 
0.961 (0.005) 
0.871 (0.014) 
0.680 (0.029) 
0.507 (0.038) 
0.341 (0.039) 
0.995 (0.001) 
0.984 (0.002) 
0.923 (0.009) 
0.628 (0.035) 

0.215 (0.126) 
0.293 (0.082) 
0.265 (0.043) 
0.213 (0.030) 
0.164 (0.021) 
0.882 (0.024) 
0.909 (0.017) 
0.836 (0.023) 
0.517 (0 .035) 
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Table 1: Performances in the toy problem. The results for kernel shaping were obtained 
using 200 gradient descent steps with step size a = 0.2 . 

The results in Table 1 indicate that the optimal performance on the test set is 
obtained using the parameter values p = 2% both for kernel shaping (R2 = 0.909) 
and for the spherical kernel (R2 = 0.293). Given the large difference between the 
R2 values, we conclude that kernel shaping clearly outperforms the spherical kernel 
on this data set. 

----

Figure 4: The eigenvectors of the estimate of n obtained on the first of 20 training sets. 
The graphs are ordered from left to right by increasing eigenvalues (decreasing extension 
of the kernel in that direction): 0.76,0.76, 0.76, 33.24, 34.88. 

Finally, Figure 4 shows the eigenvectors of the optimized n on the first of the 20 
training sets. The eigenvectors are arranged according to the size of the correspond­
ing eigenvalues. Note that the two rightmost eigenvectors, which correspond to the 
directions of minimum kernel extension, span exactly the Xl -x2-space where the 
true function lives. The kernel is stretched in the remaining directions, effectively 
discarding nonlinear contributions from X3, X4, and X5' 

5.2 Abalone Database 

The task in our second example is to predict the age of abalone based on several 
measurements . More specifically, the response variable is obtained by counting 
the number of rings in the shell in a time-consuming procedure. Preferably, the 
age of the abalone could be predicted from alternative measurements that may be 
obtained more easily. In the data set, eight candidate measurements including sex, 
dimensions, and various weights are reported along with the number of rings of the 
abalone as predictor variables. We normalize these variables to zero mean and unit 
variance prior to estimation. Overall, the data set consists of 4177 observations. To 
prevent possible artifacts resulting from the order of the data records, we randomly 
draw 2784 observations as a training set and use the remaining 1393 observations 
as a test set. Our results are summarized in Table 2 using various settings for 
the rank l, the equivalent fraction parameter p, and the gradient descent step size 
a. The optimal choice for p is 20% both for kernel shaping (R2 = 0.582) and for 
the spherical kernel (R2 = 0.572). Note that the performance improvement due to 
kernel shaping is negligible in this experiment. 
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Kernel 
spherical kernel 
spherical kernel 
spherical kernel 
spherical kernel 
spherical kernel 
spherical kernel 
kernel shaping 
kernel shaping 
kernel shaping 
kernel shaping 
kernel shaping 
kernel shaping 

p = 0.05 
p = 0.10 
P = 0.20 
P = 0.50 
p = 0.70 
P = 0.90 

l - 5, p - 0.20, a = 0.5 
l = 5, p = 0.20, a = 0.2 
l = 2, P = 0.10, a = 0.2 
l = 2, P = 0.20, a = 0.2 
l = 2, P = 0.50, a = 0.2 
l = 2, p = 0.20, a = 0.5 
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Training R2 
0.752 
0.686 
0.639 
0.595 
0.581 
0.568 
0.705 
0.698 
0.729 
0.663 
0.603 
0.669 

0.543 
0.564 
0.572 
0.565 
0.552 
0.533 
0.575 
0.577 
0.574 
0.582 
0.571 
0.582 

Table 2: Results using the Abalone database after 200 gradient descent steps. 

6 Conclusions 

We introduced a data-driven method to improve the performance of local linear 
estimates in high dimensions by optimizing the shape of the weighting kernel. In 
our experiments we found that kernel shaping clearly outperformed local linear re­
gression using a spherical kernel in a five-dimensional toy example, and led to a 
small performance improvement in a second, real-world example. To explain the 
results of the second experiment, we note that kernel shaping aims at exploiting 
global structure in the data. Thus, the absence of a larger performance improve­
ment may suggest simply that no corresponding structure prevails in that data set. 
That is, even though optimal kernel shapes exist locally, they may vary accross the 
predictor space so that they cannot be approximated by any particular global shape. 
Preliminary experiments using a localized variant of kernel shaping did not lead to 
significant performance improvements in our experiments. 
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