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Abstract 

Previous biophysical modeling work showed that nonlinear interac­
tions among nearby synapses located on active dendritic trees can 
provide a large boost in the memory capacity of a cell (Mel, 1992a, 
1992b). The aim of our present work is to quantify this boost by 
estimating the capacity of (1) a neuron model with passive den­
dritic integration where inputs are combined linearly across the 
entire cell followed by a single global threshold, and (2) an active 
dendrite model in which a threshold is applied separately to the 
output of each branch, and the branch subtotals are combined lin­
early. We focus here on the limiting case of binary-valued synaptic 
weights, and derive expressions which measure model capacity by 
estimating the number of distinct input-output functions available 
to both neuron types. We show that (1) the application of a fixed 
nonlinearity to each dendritic compartment substantially increases 
the model's flexibility, (2) for a neuron of realistic size, the capacity 
of the nonlinear cell can exceed that of the same-sized linear cell by 
more than an order of magnitude, and (3) the largest capacity boost 
occurs for cells with a relatively large number of dendritic subunits 
of relatively small size. We validated the analysis by empirically 
measuring memory capacity with randomized two-class classifica­
tion problems, where a stochastic delta rule was used to train both 
linear and nonlinear models. We found that large capacity boosts 
predicted for the nonlinear dendritic model were readily achieved 
in practice. 

-http://lnc.usc.edu 
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1 Introduction 

Both physiological evidence and connectionist theory support the notion that in 
the brain, memories are stored in the pattern of learned synaptic weight values. 
Experiments in a variety of neuronal preparations however, inQicate that the ef­
ficacy of synaptic transmission can undergo substantial fluctuations up or down, 
or both, during brief trains of synaptic stimuli. Large fluctuations in synaptic ef­
ficacy on short time scales seem inconsistent with the conventional connectionist 
assumption of stable, high-resolution synaptic weight values. Furthermore, a recent 
experimental study suggests that excitatory synapses in the hippocampus-a region 
implicated in certain forms of explicit memory-may exist in only a few long-term 
stable states, where the continuous grading of synaptic strength seen in standard 
measures of long-term potentiation (LTP) may exist only in the average over a large 
population of two-state synapses with randomly staggered thresholds for learning 
(Petersen, Malenka, Nicoli, & Hopfield, 1998). According to conventional connec­
tionist notions, the possibility that individual synapses hold only one or two bits of 
long-term state information would seem to have serious implications for the storage 
capacity of neural tissue. Exploration of this question is one of the main themes of 
this paper. 

In a related vein, we have found in previous biophysical modeling studies that 
nonlinear interactions between synapses co-activated on the same branch of an ac­
tive dendritic tree could provide an alternative form of long-term storage capacity. 
This capacity, which is largely orthogonal to that tied up in conventional synaptic 
weights, is contained instead in the spatial permutation of synaptic connections 
onto the dendritic tree-which could in principle be modified in the course of learn­
ing or development (Mel, 1992a, 1992b). In a more abstract setting, we recently 
showed that a large repository of model flexibility lies in the choice as to which of 
a large number of possible interaction terms available in high dimension is actually 
included in a learning machine's discriminant function, and that the excess capac­
ity contained in this "choice flexibility" can be quantified using straightforward 
counting arguments (Poirazi & Mel, 1999). 

2 Two Alternative Models of Dendritic Integration 

In this paper, we use a similar function-counting approach to address the more 
biologically relevant case of a neuron with mUltiple quasi-independent dendritic 
compartments (fig. 1). Our primary objective has been to compare the memory 
capacity of a cell assuming two different modes of dendritic integration. According 
to the linear model, the neuron's activation level aL(x) prior to thresholding is 
given by a weighted sum of of its inputs over the cell as a whole. According to the 
nonlinear model, the k synaptic inputs to each branch are first combined linearly, 
a static (e.g. sigmoidal) nonlinearity is applied to each of the m branch subtotals, 
and the resulting branch outputs are summed to produce the cell's overall activity 
aN{x): 

(1) 

The expressions for aL and aN were written in similar form to emphasize that the 
models have an identical number of synaptic weights, differing only in the presence 
or absence of a fixed nonlinear function g applied to the branch subtotals. Though 
individual synaptic weights in both models are constrained to have a value of 1, 
any of the d input lines may form multiple connections on the same or different 
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Figure 1: A cell is modeled as a set of m identical branches connected to a soma, 
where each branch contains k synaptic contacts driven by one of d distinct input 
lines. 

branches as a means of representing graded synaptic strengths. Similarly, an input 
line which forms no connection has an implicit weight of O. In light of this restriction 
to positive (or zero) weight values, both the linear and nonlinear models are split 
into two opponent channels a+ and a- dedicated to positive vs. negative coefficients, 
respectively. This leads to a final output for each model: 

yL(x) = sgn [at(x) - aL(x)] YN(X) = sgn [a;t(x) - aiV(x)] (2) 

where the sgn operator maps the total activation level into a class label of {-I, I}. 

In the following, we derive expressions for the number of distinct parameter st.ates 
available to the linear vs. nonlinear models, a measure which we have found to be 
a reliable predictor of storage capacity under certain restrictions (Poirazi & Mel, 
1999). Based on these expressions, we compute the capacity boost provided by 
the branch nonlinearity as a function of the number of branches m, synaptic sites 
per branch k, and input space dimensionality d. Finally, we test the predictions of 
the analytical model by training both linear and nonlinear models on randomized 
classification problems using a stochastic delta rule, and empirically measure and 
compare the storage capacities of the two models. 

3 Results 

3.1 Counting Parameter States: Linear vs. Nonlinear Model 

We derived expressions for BLand B N, which estimate the total number of param­
eter bits available to the linear vs. nonlinear models, respectively: 

(( k+d-1) 1) 
B N = 2log2 k m + m - BL = 2log2 ( S+d-1) 

S 

(3) 

These expressions estimate the number of non-redundant states in each neuron 
type, i.e., those assignments of input lines to dendritic sites which yield distinct 
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input-output functions YL or YN· 

These formulae are plotted in figure 2A with d = 100, where each curve represents 
a cell with a fixed number of branches (indicated by m). In each case, the capac­
ity increases steadily as the number of synapses per branch, k, is increased. The 
logarithmic growth in the capacity of the linear model (evident in an asymptotic 
analysis of the expression for B L) is shown at the bottom of the graph (circles), 
from which it may be seen that the boost in capacity provided by the dendritic 
branch nonlinearity increases steadily with the number of synaptic sites. For a cell 
with 100 branches containing 100 synaptic sites each, the capacity boost relative to 
the linear model exceeds a factor of 20. 

Figure 2B shows that for a given total number of synaptic sites, in this case s = 
m· k = 10,000, the capacity of the nonlinear cell is maximized for a specific choice 
of m and k. The peak of each of the three curves (computed for different values 
of d) occurs for a cell containing 1,250 branches with 8 synapses each. However, 
the capacity is only moderately sensitive to the branch count: the capacity of a cell 
with 100 branches of 100 synapses each, for example, lies within a factor of two of 
the optimal configuration. The linear cell capacities can be found at the far right 
edge of the plot (m = 10,000), since a nonlinear model with one synapse per branch 
has a number of trainable states identical to that of a linear model. 

3.2 Validating the Analytical Model 

To test the predictions of the analytical model, we trained both linear and non­
linear cells on randomized two-class classification problems. Training samples were 
drawn from a 40-dimensional spherical Gaussian distribution and were randomly 
assigned positive or negative labels-in some runs, training patterns were evenly 
divided between positive and negative labels, with similar results. Each of the 40 
original input dimensions was recoded using a set of 10 I-dimensional binary, non­
overlapping receptive fields with centers spaced along each dimension such that all 
receptive fields would be activated equally often. This manipulation mapped the 
original 40-dimensional learning problem into 400 dimensions, thereby increasing 
the discriminability of the training samples. The relative memory capacity of linear 
vs. nonlinear cells was then determined empirically by comparing the number of 
training patterns learnable at a fixed error rate of 2%. 

The learning rule used for both cell types was similar to the "clusteron" learning 
rule described in (Mel, 1992a), and involved two mechanisms known to contribute to 
neural development: (1) random activity-independent synapse formation, and (2) 
activity-dependent synapse stabilization. In each iteration, a set of 25 synapses was 
chosen at random, and the "worst" synapse was identified based on the correlation 
over the training set of (i) the input's pre-synaptic activity, (ii) the post-synaptic 
activity (Le. the local nonlinear branch response for the nonlinear energy model or 
a constant of 1 for the linear model), and (iii) a global "delta" signal with a value 
of a if the cell responded correctly to the input pattern, or ±l if the cell responded 
incorrectly. The poorest-performing synapse on the branch was then targeted for 
replacement with a new synapse drawn at random from the d input lines. The 
probability that the replacement actually occurred was given by a Boltzmann equa­
tion based on the difference in the training set error rates before and after the 
replacement. A "temperature" variable was gradually lowered over the course of 
the simulation, which was terminated when no further improvement in error rates 
was seen. 

Results of the learning runs are shown in fig. 3 where the analytical capacity (mea­
sured in bits) was scaled to the numerical capacity (measured in training patterns 



Memory Capacity of Linear vs. Nonlinear Models of Dendritic Integration 161 

A Capacity of Linear vs. Nonlinear 
Model for Various Geometries 
x 10' 
8.---~----~--~----~---, 

m=lOOO ~ 
7 

6 
~ 
§ 5 
>. 
'0 4 
!IS 

1t3 
U 

2 

d = 100 

Nonlinear Model H r 
m- 000 

m 

Linear Model 

2000 4000 6000 8000 10000 

~~l Syn:p:c Sires ~ 

B Capacity of Linear VS. Nonlinear Model 
for Different Input Space Dimensions 
x10' 

14 .t" ....... 
12 : d= lOO~ 

j " , , Nonlinear Model 

s = 10,000 

10 j , 
'(i.) , .... co ....... 

'"'. Linear ~del 

l~ 
o 2000 4000 6000 8000 10000 

Number of Branches (m) 

* Figure 2: Comparison of linear vs. nonlinear model capacity as a function of branch 
geometry. A. Capacity in bits for linear and several nonlinear cells with different 
branch counts (for d = 100). For each curve indexed by branch count m, sites per 
branch k increases from left to right as indicated iconically beneath the x-axis. For 
all cells, capacity increases with an increasing number of sites, though the capacity 
of the linear model grows logarithmically, leading to an increasingly large capacity 
boost for the size-matched nonlinear cells. B. Capacity of a nonlinear model with 
10,000 sites for different values of input space dimension d. Branch count m grows 
along the x-axis. Cells at right edge of plot contain only one synapse per branch, 
and thus have a number of modifiable parameters (and hence capacity) equivalent 
to that of the linear model. All three curves show that there exist an optimal 
geometry which maximizes the capacity of the nonlinear model (in this case 1,250 
branches with 8 synapses each). 

learned at 2% error). Two key features of the theoretical curves (dashed lines) are 
echoed in the empirical performance curves (solid lines), including the much larger 
storage capacity of the nonlinear cell model, and the specific cell geometry which 
maximizes the capacity boost. 

4 Discussion 

We found using both analytical and numerical methods that in the limit of low­
resolution synaptic weights, application of a fixed output nonlinearity to each com­
partment of a dendritic tree leads to a significant boost in capacity relative to a 
cell whose post-synaptic integration is linear. For example, given a cell with 10,000 
synaptic contacts originating from 400 distinct input lines, the analysis predicts a 
23-fold increase in capacity for the nonlinear cell, while numerical simulations using 
a stochastic delta rule actually achieve a I5-fold boost. 

Given that a linear and a nonlinear model have an identical number of synaptic con­
tacts with uniform synaptic weight values, what accounts for the capacity boost? 
The principal insight gained in this work is that the attachment of a fixed non­
linearity to each branch in a neuron substantially increases its underlying "model 
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Figure 3: Comparison of ca­
pacity boost predicted by analy­
sis vs. that observed empirically 
when linear and nonlinear mod­
els were trained using the same 

I, \ 

>. 50 \. '13 \ Nonlinear Model 

stochastic delta rule. Dashed 
lines: analytical curves for lin­
ear vs. nonlinear model for a cell 
with 10,000 sites show capacity 
for varying cell geometries. Solid 
lines: empirical performance for 
same two cells at 2% error cri­
terion, using a subunit nonlin­
earity g(x) = xlO (similar re­
sults were seen using a sigmoidal 
nonlinearity, though the param­
eters of the optimal sigmoid de­
pended on the cell geometry). 

~ 40 \ 03 ____________________ ~, 

<..) 30 '" 

2 

, , , , , , ,. 

Linear Model For both analytical and numeri-
, 2 cal curves, peak capacity is seen o x10 o 10 20 30 40 50 60 70 80 90 100 for cell with 1,000 branches (10 

Number of Branches (m) synapses per branch) .. Cap~city * exceeds that of same-sIzed lmear ---I...... .:Jk- model by a factor of 15 at the 
m ~ peak, and by more than a factor 

of 7 for cells ranging from about 
3 to 60 synapses per branch (hor-
izontal dotted line). 

flexibility" , i.e. confers upon the cell a much larger choice of distinct input-output 
relations from which to select during learning. This may be illustrated as follows. 
For the linear model, branching structure is irrelevant so that Y L depends only on 
the number of input connections formed from each of the d input lines. All spatial 
permutations of a set of input connections are thus interchangeable and produce 
identical cell responses. This massive redundancy confines the capacity of the linear 
model to grow only logarithmically with an increasing number of synaptic sites (fig. 
1A), an unfortunate limitation for a brain in which the formation of large num­
bers of synaptic contacts between neurons is routine. In contrast, the model with 
nonlinear subunits contains many fewer redundancies: most spatial permutations 
of the same set of input connections lead to non-identical values of YN, since an 
input x swapped from branch bi to branch b2 leads to the elimination of the k - 1 
interaction terms involving x on branch bi and the creation of k -1 new interaction 
terms on branch b2 • 

Interestingly, the particular form of the branch nonlinearity has virtually no effect 
on the capacity of the cell as far as the counting arguments are concerned (though 
it can have a profound effect on the cell's "representational bias"-see below), since 
the principal effect of the nonlinearity in our capacity calculations is to break the 
symmetry among the different branches. 

The issue of representational bias is a critical one, however, and must be considered 
when attempting to predict absolute or relative performance rates for particular 
classifiers confronted with specific learning problems. Thus, intrinsic differences in 
the geometry of linear vs. nonlinear discriminant functions mean that the param-
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eters available to the two models may be better or worse suited to solve a given 
learning problem, even if the two models were equated for total parameter flexibility. 
While such biases are not taken into account in our analysis, they could nonetheless 
have a substantial effect on measured error rates-and could thus throw a perfor­
mance advantage to one machine or the other. One danger is that performance 
differences measured empirically could be misinterpreted as arising from differences 
in underlying model capacity, when in fact they arise from differential suitability 
of the two classifiers for the learning problem at hand. To avoid this difficulty, the 
random classification problems we used to empirically assess memory capacity were 
chosen to level the playing field for the linear vs. nonlinear cells, since in a previous 
study we found that the coefficients on linear vs. nonlinear (quadratic) terms were 
about equally efficient as featUres for this task. In this way, differences in measured 
performance on these tasks were primarily attributable to underlying capacity dif­
ferences, rather than differences in representational bias. This experimental control 
permitted more meaningful comparisons between our analytical and empirical tests 
(fig. 3). 

The problem of representational bias crops up in a second guise, wherein the an­
alytical expressions for capacity in eq. 1 can significantly overestimate the actual 
performance of the cell. This occurs when a particular ensemble of learning prob­
lems fails to utilize all of the entropy available in the cell's parameter space-for 
example, by requiring the cell to visit only a small subset of its parameter states rel­
atively often. This invalidates the maximum parameter entropy assumption made 
in the derivation of eq. 1, so that measured performance will tend to fall below 
predicted values. The actual performance of either model when confronted with 
an ensemble of learning problems will thus be determined by (1) the number of 
trainable parameters available to the neuron (as measured by eq. 1), (2) the suit­
ability of the neuron's parameters for solving the assigned learning problems, and 
(3) the utilization of parameters, which relates to the entropy in the joint proba­
bility of the parameter values averaged over the ensemble of learning problems. In 
our comparisons here of linear and nonlinear cells, we we have calculated (1), and 
have attempted to control for (2) and (3). 

In conclusion, our results build upon the results of earlier biophysical simulations, 
and indicate that in the limit of a large number of low-resolution synaptic weights, 
nonlinear dendritic processing could nonetheless have a major impact on the storage 
capacity of neural tissue. 

References 
Mel, B. W. (1992a). The clusteron: Toward a simple abstraction for a complex 

neuron. In Moody, J., Hanson, S., & Lippmann, R. (Eds.), Advances in Neural 
Information Processing Systems, vol. 4, pp. 35-42: Morgan Kaufmann, San 
Mateo, CA. 

Mel, B. W. (1992b). NMDA-based pattern discrimination in a modeled cortical 
neuron. Neural Comp., 4, 502-516. 

Petersen, C. C. H., Malenka, R. C., Nicoll, R. A., & Hopfield, J. J. (1998). All-or­
none potentiation and CA3-CA1 synapses. Proc. Natl. Acad. Sci. USA, 95, 
4732-4737. 

Poirazi, P., & Mel, B. W. (1999). Choice and value flexibility jointly contribute to 
the capacity of a subsampled quadratic classifier. Neural Comp., in press. 


