
A Multi-class Linear Learning Algorithm
Related to Winnow

Chris Mesterhann*
Rutgers Computer Science Department

110 Frelinghuysen Road
Piscataway, NJ 08854

mesterha@paul.rutgers.edu

Abstract

In this paper, we present Committee, a new multi-class learning algo­
rithm related to the Winnow family of algorithms. Committee is an al­
gorithm for combining the predictions of a set of sub-experts in the on­
line mistake-bounded model oflearning. A sub-expert is a special type of
attribute that predicts with a distribution over a finite number of classes.
Committee learns a linear function of sub-experts and uses this function
to make class predictions. We provide bounds for Committee that show
it performs well when the target can be represented by a few relevant
sub-experts. We also show how Committee can be used to solve more
traditional problems composed of attributes. This leads to a natural ex­
tension that learns on multi-class problems that contain both traditional
attributes and sub-experts.

1 Introduction

In this paper, we present a new multi-class learning algorithm called Committee. Committee
learns a k class target function by combining information from a large set of sub-experts.
A sub-expert is a special type of attribute that predicts with a distribution over the target
classes. The target space of functions are linear-max functions. We define these as functions
that take a linear combination of sub-expert predictions and return the class with maximum
value. It may be useful to think of the sub-experts as individual classifying functions that
are attempting to predict the target function. Even though the individual sub-experts may
not be perfect, Committee attempts to learn a linear-max function that represents the target
function. In truth, this picture is not quite accurate. The reason we call them sub-experts
and not experts is because even though a individual sub-expert might be poor at prediction,
it may be useful when used in a linear-max function. For example, some sub-experts might
be used to add constant weights to the linear-max function.

The algorithm is analyzed for the on-line mistake-bounded model oflearning [Lit89]. This
is a useful model for a type of incremental learning where an algorithm can use feedback
about its current hypothesis to improve its performance. In this model, the algorithm goes
through a series of learning trials. A trial is composed of three steps. First, the algorithm

·Part of this work was supported by NEe Research Institute, Princeton, NJ.

520 C. Mesterharm

receives an instance, in this case, the predictions of the sub-experts. Second, the algorithm
predicts a label for the instance; this is the global prediction of Committee. And last, the
algorithm receives the true label of the instance; Committee uses this information to up­
date its estimate of the target. The goal of the algorithm is to minimize the total number of
prediction mistakes the algorithm makes while learning the target.

The analysis and performance of Committee is similar to another learning algorithm, Win­
now [Lit89] . Winnow is an algorithm for learning a linear-threshold function that maps
attributes in [0, 1] to a binary target. It is an algorithm that is effective when the concept
can be represented with a few relevant attributes, irrespective of the behavior of the other
attributes. Committee is similar but deals with learning a target that contains only a few
relevant sub-experts. While learning with sub-experts is interesting in it's own right, it
turns out the distinction between the two tasks is not significant. We will show in section 5
how to transform attributes from [0, 1] into sub-experts. Using particular transformations,
Committee is identical to the Winnow algorithms, Balanced and WMA [Lit89]. Further­
more, we can generalize these transformations to handle attribute problems with multi-class
targets. These transformations naturally lead to a hybrid algorithm that allows a combina­
tion of sub-experts and attributes for multi-class learning problems. This opens up a range of
new practical problems that did not easily fit into the previous framework of [0, 1 J attributes
and binary classification.

2 Previous work

Many people have successfully tried the Winnow algorithms on real-world tasks. In the
course of their work, they have made modifications to the algorithms to fit certain aspects
of their problem. These modifications include multi-class extensions.

For example, [DKR97] use Winnow algorithms on text classification problems. This multi­
class problem has a special form ; a document can belong to more than one class. Because
of this property, it makes sense to learn a different binary classifier for each class. The linear
functions are allowed, even desired, to overlap. However, this paper is concerned with cases
where this is not possible. For example, in [GR96] the correct spelling of a word must be
selected from a set of many possibilities . In this setting, it is more desirable to have the
algorithm select a single word.

The work in [GR96] presents many interesting ideas and modifications of the Winnow al­
gorithms. At a minimum, these modification are useful for improving the performance of
Winnow on those particular problems. Part of that work also extends the Winnow algorithm
to general multi-class problems. While the results are favorable, the contribution ofthis pa­
per is to give a different algorithm that has a stronger theoretical foundation for customizing
a particular multi-class problem.

Blum also works with multi-class Winnow algorithms on the calendar scheduling problem
of [MCF+94] . In [Blu95], a modified Winnow is given with theoretical arguments for good
performance on certain types of multi-class disjunctions. In this paper, these results are ex­
tended, with the new algorithm Committee, to cover a wider range of multi-class linear func­
tions.

Other related theoretical work on multi-class problems includes the regression algorithm
EG±. In [KW97], Kivinen and Warmuth introduce EG±, an algorithm related to Winnow
but used on regression problems. In general, while regression is a useful framework for
many multi-class problems, it is not straightforward how to extend regression to the con­
cepts learned by Committee. A particular problem is the inability of current regression tech­
niques to handle 0-1 loss.

A Multi-class Linear Learning Algorithm Related to Winnow 521

3 Algorithm

This section of the paper describes the details of Committee. Near the end of the section,
we will give a formal statement of the algorithm.

3.1 Prediction scheme

Assume there are n sub-experts. Each sub-expert has a positive weight that is used to vote
for k different classes; let Wi be the weight of sub-expert i. A sub-expert can vote for sev­
eral classes by spreading its weight with a prediction distribution. For example, if k = 3, a
sub-expert may give 3/5 of its weight to class 1, 1/5 of its weight to class 2, and 1/5 of its
weight to class 3. Let Xi represent this prediction distribution, where x~ is the fraction of the

weight sub-expert i gives to class j . The vote for class j is L~=I WiX~. Committee predicts
the class that has the highest vote. (On ties, the algorithm picks one of the classes involved
in the tie.) We call the function computed by this prediction scheme a linear-max function,
since it is the maximum class value taken from a linear combination of the SUb-expert pre­
dictions.

3.2 Target function

The goal of Committee is to mInimIZe the number of mistakes by quickly learning
sub-expert weights that correctly classify the target function. Assume there exists fL, a vec­
tor of nonnegative weights that correctly classifies the target. Notice that fL can be multiplied
by any constant without changing the target. To remove this confusion, we will normalize
the weights to sum to 1, i.e., L~=Il-1i = 1. Let ((j) be the target's vote for class j.

n

((j) = L l-1iX~
t=I

Part of the difficulty of the learning problem is hidden in the target weights. Intuitively, a
target function will be more difficult to learn ifthere is a small difference between the (votes
of the correct and incorrect classes. We measure this difficulty by looking at the minimum
difference, over all trials, of the vote of the correct label and the vote of the other labels.
Assume for trial t that Pt is the correct label.

8= min (min(((pt)-((j)))
tETnals rlpt

Because these are the weights of the target, and the target always makes the correct predic­
tion, 8 > o.
One problem with the above assumptions is that they do not allow noise (cases where 8 <::; 0).
However, there are variations of the analysis that allow for limited amounts of noise [Lit89,
Lit91]. Also experimental work [Lit95, LM] shows the family of Winnow algorithms to be
much more robust to noise than the theory would predict. Based on the similarity of the
algorithm and analysis, and some preliminary experiments, Committee should be able to
tolerate some noise.

3.3 Updates

Committee only updates on mistakes using multiplicative updates. The algorithm starts by
initializing all weights to 1 In. During the trials, let P be the correct label and .x be the pre­
dicted label of Committee. When .x =1= P the weight of each sub-expert i is multiplied by
aX; -x;. This corresponds to increasing the weights of the sub-experts who predicted the

522 C. Mesterharm

correct label instead of the label Committee predicted. The value of 0' is initialized at the
start of the algorithm. The optimal value of 0' for the bounds depends on 6. Often 6 is not
known in advance, but experiments on Winnow algorithms suggest that these algorithms
are more flexible, often performing well with a wider range of 0' values [LM). Last, the
weights are renormalize to sum to 1. While this is not strictly necessary, normalizing has
several advantages including reducing the likelyhood of underflow/overflow errors.

3.4 Committee code

Initialization

Trials

'Vi E {l , . .. , n} W i:= lin.
Set 0' > 1.

Instance sub-experts (Xl , . .. , xn) .
Prediction >. is the first class c such that for all other classes J,

"n c > "n j
L...- i =1 W i X i - L...-i=1 W i X t •

Update Let p be the correct label. If mistake (>' # p)
fori:=l ton

p >.
W i := O'X i -x, Wi .

Normalize weights, L:~= l W t = 1

3.5 Mistake bound

We do not have the space to give the proof for the mistake bound of Committee, but the
technique is similar to the proof of the Winnow algorithm, Balanced, given in [Lit89). For
the complete proof, the reader can refer to [Mes99).

Theorem 1 Committee makes at most 2ln (n) 162mistakes when the target conditions in
section 3.2 are satisfied and 0' is set to (1 - 6) - 1/2.

Surprisingly, this bound does not refer to the number of classes. The effects of larger values
of k show up indirectly in the 6 value.

While it is not obvious, this bound shows that Committee performs well when the target
can be represented by a small fraction of the sub-experts. Call the sub-experts in the target
the relevant sub-experts. Since 6 is a function of the target, 6 only depends on the relevant
sub-experts. On the other hand, the remaining sub-experts have a small effect on the bound
since they are only represented in the In(n) factor. This means that the mistake bound of
Committee is fairly stable even when adding a large number of additional sub-experts. In
truth, this doesn ' t mean that the algorithm will have a good bound when there are few rele­
vant sub-experts. In some cases, a small number of sub-experts can give an arbitrarily small
6 value. (This is a general problem with all the Winnow algorithms.) What it does mean is
that, given any problem, increasing the number of irrelevant sub-experts will only have a
logarithmic effect on the mistake bound.

4 Attributes to sub-experts

Often there are no obvious sub-experts to use in solving a learning problem. Many times the
only information available is a set of attributes. For attributes in [0,1]' we will show how to
use Committee to learn a natural kind of k class target function , a linear machine. To learn
this target, we will transform each attribute into k separate sub-experts. We will use some
of the same notion as Committee to help understand the transformation.

A Multi-class Linear Learning Algorithm Related to Winnow 523

4.1 Attribute target (linear machine)

A linear machine [DH73] is a prediction function that divides the feature space into disjoint
convex regions where each class corresponds to one region. The predictions are made by
a comparing the value of k different linear functions where each function corresponds to a
class.

More formally, assume there are m - 1 attributes and k classes. Let Zi E [0,1] be attribute
i. Assume the target function is represented using k linear functions of the attributes. Let
((j) = L::II-L{ Zi be the linear function for class j where I-Li is the weight of attribute i in
class j. Notice that we have added one extra attribute. This attribute is set to 1 and is needed
for the constant portion of the linear functions. The target function labels an instance with
the class of the largest (function. (Ties are not defined.) Therefore, ((j) is similar to the
voting function for class j used in Committee.

4.2 Transforming the target

One difficulty with these linear functions is that they may have negative weights. Since
Committee only allows targets with nonnegative weights, we need transform to an equiv­
alent problem that has nonnegative weights. This is not difficult. Since we are only con­
cerned with the relative difference between the (functions, we are allowed to add any func­
tion to the (functions as long as we add it to all (functions. This gives us a simple procedure
to remove negative weights. For example, if ((1) = 3Z1 - 2Z2 + 1z3 -4, we can add 2Z2 +4
to every (function to remove the negative weights from ((1). It is straightforward to extend
this and remove all negative weights.

We also need to normalize the weights. Again, since only the relative difference between
the (functions matter, we can divide all the (functions by any constant. We normalize
the weights to sum to 1, i.e., L:~=1L:~11-L{ = 1. At this point, without loss of generality,
assume that the original (functions are nonnegative and normalized.

The last step is to identify a 8 value. We use the same definition of 8 as Committee substi­
tuting the corresponding (functions of the linear machine. Assume for trial t that Pt is the
correct label.

8 = min (min(((Pt) - ((j)))
tETrwls ji-P,

4.3 Transforming the attributes

The transformation works as follows: convert attribute Zi into k sub-experts. Each
sub-expert will always vote for one of the k classes with value Zi. The target weight for
each of these sub-experts is the corresponding target weight of the attribute, label pair in
the (functions . Do this for every attribute.

Notice that we are not using distributions for the sub-expert predictions. A sub-expert's
prediction can be converted to a distribution by adding a constant amount to each class pre­
diction. For example, a sub-expert that predicts Zl = .7, Z2 = 0, Z3 = ° can be changed
to Zl = .8, Z2 = .1, Z3 = .1 by adding .1 to each class. This conversion does not affect
the predicting or updating of Committee.

524 C. Mesterharm

Theorem 2 Committee makes at most 2In(mk)/82mistakes on a linear machine, as de­
fined in this section, when 0 is set to (1 - 8)-1/2.

Proof: The above target transformation creates mk normalized target sub-experts that vote
with the same (functions as the linear machine. Therefore, this set of sub-experts has the
same 8 value. Plugging these values into the bound for Committee gives the result.

This transformation provides a simple procedure for solving linear machine problems.
While the details of the transformation may look cumbersome, the actual implementa­
tion of the algorithm is relatively simple. There is no need to explicitly keep track of the
sub-experts. Instead, the algorithm can use a linear machine type representation. Each class
keeps a vector of weights, one weight for each attribute. During an update, only the correct
class weights and the predicted class weights are changed. The correct class weights are
multiplied by O Zi; the predicted class weights are multiplied by o -z' .

The above procedure is very similar to the Balanced algorithm from [Lit89] , in fact, for k =
2, it is identical. A similar transformation duplicates the behavior of the linear-threshold
learning version ofWMA as given in [Lit89].

While this transformation shows some advantages for k = 2, more research is needed to
determine the proper way to generalize to the multi-class case. For both of these transfor­
mations, the bounds given in this paper are equivalent (except for a superficial adjustment
in the 8 notation of WMA) to the original bounds given in [Lit89] .

4.4 Combining attributes and sub-experts

These transformations suggest the proper way to do a hybrid algorithm that combines
sub-experts and attributes: use the transformations to create new sub-experts from the at­
tributes and combine them with the original sub-experts when running Committee. It may
even be desirable to break original sub-experts into attributes and use both in the algorithm
because some sub-experts may perform better on certain classes. For example, if it is felt
that a sub-expert is particularly good at class 1, we can perform the following transforma-
tion.

Now, instead of using one weight for the whole sub-expert, Committee can also learn based
on the sub-expert's performance for the first class. Even if a good target is representable
only with the original sub-experts, these additional sub-experts will not have a large effect
because of the logarithmic bound. In the same vein, it may be useful to add constant at­
tributes to a set of sub-experts. These add only k extra SUb-experts, but allow the algorithm
to represent a larger set of target functions .

5 Conclusion

In this paper, we have introduced Committee, a multi-class learning algorithm. We feel that
this algori thm will be important in practice, extending the range of problems that can be han­
dled by the Winnow family of algorithms. With a solid theoretical foundation, researchers
can customize Winnow algorithms to handle various multi-class problems.

A Multi-class Linear Learning Algorithm Related to Winnow 525

Part of this customization includes feature transformations. We show how Committee can
handle general linear machine problems by transforming attributes into sub-experts. This
suggests a way to do a hybrid learning algorithm that allows a combination of sub-experts
and attributes. This same techniques can also be used to add to the representational power
on a standard sub-expert problem.

In the future, we plan to empirically test Committee and the feature transformations on real
world problems. Part of this testing will include modifying the algorithm to use extra infor­
mation, that is related to the proof technique [Mes99), in an attempt to lower the number of
mistakes. We speculate that adjusting the multiplier to increase the change in progress per
trial will be useful for certain types of multi-class problems.

Acknowledgments

We thank Nick Littlestone for stimulating this work by suggesting techniques for converting
the Balanced algorithm to multi-class targets. Also we thank Haym Hirsh, Nick Littlestone
and Warren Smith for providing valuable comments and corrections.

References

[Blu95] Avrim Blum. Empirical support for winnow and weighted-majority algorithms:
results on a calendar scheduling domain. In ML-95, pages 64-72, 1995.

[DH73) R. O. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, New
York,1973 .

[DKR97] I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization.
In EMNLP-97, pages 55-63,1997.

[GR96) A. R. Golding and D. Roth. Applying winnow to context-sensitive spelling
correction. In ML-96, 1996.

[KW97) Jyrki Kivinen and Manfred K. Warmuth. Additive versus exponentiated gradi­
ent updates for linear prediction. Information and Computation, 132(1): 1-64,
1997.

[Lit89] Nick Littlestone. Mistake bounds and linear-threshold learning algorithms.
PhD thesis, University of California, Santa Cruz, 1989. Technical Report
UCSC-CRL-89-11.

[Lit91) Nick Littlestone. Redundant noisy attributes, attribute errors, and linear­
threshold learning using winnow. In COLT-91 , pages 147-156,1991.

[Lit95] Nick Littlestone. Comparing several linear-threshold learning algorithms on
tasks involving superfluous attributes. In ML-95, pages 353-361 , 1995.

[LM) Nick Littlestone and Chris Mesterharm. A simulation study of winnow and
related algorithms . Work in progress.

[MCF+94) T. Mitchell, R. Caruana, D. Freitag, 1. McDermott, and D. Zabowski. Experi­
ence with a personal learning assistant. CACM, 37(7):81-91, 1994.

[Mes99) Chris Mesterharm. A multi-class linear learning algorithm related to winnow
with proof. Technical report , Rutgers University, 1999.

