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Abstract 
Competition in the wireless telecommunications industry is rampant. To main­
tain profitability, wireless carriers must control chum, the loss of subscribers 
who switch from one carrier to another. We explore statistical techniques for 
chum prediction and, based on these predictions. an optimal policy for identify­
ing customers to whom incentives should be offered to increase retention. Our 
experiments are based on a data base of nearly 47,000 U.S. domestic subscrib­
ers, and includes information about their usage, billing, credit, application, and 
complaint history. We show that under a wide variety of assumptions concerning 
the cost of intervention and the retention rate resulting from intervention, chum 
prediction and remediation can yield significant savings to a carrier. We also 
show the importance of a data representation crafted by domain experts. 

Competition in the wireless telecommunications industry is rampant. As many as seven 
competing carriers operate in each market. The industry is extremely dynamic, with new 
services, technologies, and carriers constantly altering the landscape. Carriers announce 
new rates and incentives weekly, hoping to entice new subscribers and to lure subscribers 
away from the competition. The extent of rivalry is reflected in the deluge of advertise­
ments for wireless service in the daily newspaper and other mass media. 

The United States had 69 million wireless subscribers in 1998, roughly 25% of the 
population. Some markets are further developed; for example, the subscription rate in Fin­
land is 53%. Industry forecasts are for a U.S. penetration rate of 48% by 2003. Although 
there is significant room for growth in most markets, the industry growth rate is declining 
and competition is rising. Consequently, it has become crucial for wireless carriers to con­
trol chum-the loss of customers who switch from one carrier to another. At present, 
domestic monthly chum rates are 2-3% of the customer base. At an average cost of $400 
to acquire a subscriber, churn cost the industry nearly $6.3 bilIion in 1998; the total annual 
loss rose to nearly $9.6 billion when lost monthly revenue from subscriber cancellations is 
considered (Luna, 1998). It costs roughly five times as much to sign on a new subscriber 
as to retain an existing one. Consequently, for a carrier with 1.5 milIion subscribers, reduc­
ing the monthly churn' rate from 2% to 1 % would yield an increase in annual earnings of at 
least $54 milIion, and an increase in shareholder value of approximately $150 million. 
(Estimates are even higher when lost monthly revenue is considered; see Fowlkes, Madan, 
Andrew, & Jensen, 1999; Luna, 1998.) 

The goal of our research is to evaluate the benefits of predicting churn using tech­
niques from statistical machine learning. We designed models that predict the probability 
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of a subscriber churning within a short time window, and we evaluated how well these pre­
dictions could be used for decision making by estimating potential cost savings to the 
wireless carrier under a variety of assumptions concerning subscriber behavior. 

1 THE FRAMEWORK 
Figure 1 shows a framework for churn prediction and profitability maximization. 

Data from a subscriber-on which we elaborate in the next section-is fed into three com­
ponents which estimate: the likelihood that the subscriber will churn, the profitability 
(expected monthly revenue) of the subscriber, and the subscriber's credit risk. Profitability 
and credit risk determine how valuable the subscriber is to the carrier, and hence influ­
ences how much the carrier should be willing to spend to retain the subscriber. Based on 
the predictions of subscriber behavior, a decision making component determines an inter­
vention strategy-whether a subscriber should be contacted, and if so, what incentives 
should be offered to appease them. We adopt a decision-theoretic approach which aims to 
maximize the expected profit to the carrier. 

In the present work, we focus on churn prediction and utilize simple measures of 
subscriber profitability and credit risk. However, current modeling efforts are directed at 
more intelligent models of profitability and credit risk. 

2 DATASET 
The subscriber data used for our experiments was provided by a major wireless car­

rier. The carrier does not want to be identified, as churn rates are confidential. The carrier 
provided a data base of 46,744 primarily business subscribers, all of whom had multiple 
services. (Each service corresponds to a cellular telephone or to some other service, such 
as voice messaging or beeper capability.) All subscribers were from the same region of the 
United States, about 20% in major metropolitan areas and 80% more geographically dis­
tributed. The total revenue for all subscribers in the data base was $14 million in October 
1998. The average revenue per subscriber was $234. We focused on multi-service sub­
scribers, because they provide significantly more revenue than do typical single-service 
subscribers. 

When subscribers are on extended contracts, churn prediction is relatively easy: it 
seldom occurs during the contract period, and often occurs when the contract comes to an 
end. Consequently, all subscribers in our data base were month-to-month, requiring the 
use of more subtle features than contract termination date to anticipate churn. 

The subscriber data was extracted from the time interval October through December, 
1998. Based on these data, the task was to predict whether a subscriber would churn in 
January or February 1999. The carrier provided their internal definition of churn, which 
was based on the closing of all services held by a subscriber. From this definition, 2,876 of 
the subscribers active in October through December churned-6.2% of the data base. 
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FIGURE 1. The framework for churn prediction and profitability maximization 
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2.1 INPUT FEATURES 

Ultimately, churn occurs because subscribers are dissatisfied with the price or quality of 
service, usually as compared to a competing carrier. The main reasons for subscriber dis­
satisfaction vary by region and over time. Table 1 lists important factors that influence 
subscriber satisfaction, as well as the relative importance of the factors (J. D. Power and 
Associates, 1998). In the third column, we list the type of information required for deter­
mining whether a particular factor is likely to be influencing a subscriber. We categorize 
the types of information as follows. 

Network. Call detail records (date, time, duration, and location of all calls), dropped 
cans (calls lost due to lack of coverage or available bandwidth), and quality of ser­
vice data (interference, poor coverage). 
Billing. Financial information appearing on a subscriber's bill (monthly fee, addi­
tional charges for roaming and additional minutes beyond monthly prepaid limit). 
Customer Service. Cans to the customer service department and their resolutions. 
Application for Service. Information from the initial application for service, includ­
ing contract details, rate plan, handset type, and credit report. 
Market. Details of rate plans offered by carrier and its competitors, recent entry of 
competitors into market, advertising campaigns, etc. 
Demographics. Geographic and population data of a given region. 

A subset of these information sources were used in the present study. Most notably, we did 
not utilize market information, because the study was conducted over a fairly short time 
interval during which the market did not change significantly. More important, the market 
forces were fairly uniform in the various geographic regions from which our subscribers 
were selected. Also, we were unable to obtain information about the subscriber equipment 
(age and type of handset used). 

The information sources listed above were distributed over three distinct data bases 
maintained by the carrier. The data bases contained thousands of fields, from which we 
identified 134 variables associated with each subscriber which we conjectured might be 
linked to churn. The variables included: subscriber location, credit classification, customer 
classification (e.g., corporate versus retail), number of active services of various types, 
beginning and termination dates of various services, avenue through which services were 
activated, monthly charges and usage, number, dates and nature of customer service calls, 
number of cans made, and number of abnormany terminated cans. 

2.2 DATA REPRESENTATION 

As all statisticians and artificial intelligence researchers appreciate, representation is key. 
A significant portion of our effort involved working with domain experts in the wireless 
telecommunications industry to develop a representation of the data that highlights and 
makes explicit those features which-in the expert's judgement-were highly related to 
churn. To evaluate the benefit of carefuny constructing the representation, we performed 

TABLE 1. Factors influencing subscriber satisfaction 

Factor Importance Nature of data required for prediction 

call quality 21% network 
pricing options 18% market, billing 
corporate capability 17% market, customer service 
customer service 17% customer service 
credibility I customer communications 10% market, customer service 
roaming I coverage 7% network 
nandset 4V/o application 
olillng 3% billing 
cost of roaming 3"10 marKet, billing 
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studies using both naive and a sophisticated representations. 
The naive representation mapped the 134 variables to a vector of 148 elements in a 

straightforward manner. Numerical variables, such as the length of time a subscriber had 
been with the carrier, were translated to an element of the representational vector which 
was linearly related to the variable value. We imposed lower and upper limits on the vari­
ables, so as to suppress irrelevant variation and so as not to mask relevant variation by too 
large a dynamic range; vector elements were restricted to lie between --4 and +4 standard 
deviations of the variable. One-of-n discrete variables, such as credit classification, were 
translated into an n-dimensional subvector with one nonzero element. 

The sophisticated representation incorporated the domain knowledge of our experts 
to produce a 73-element vector encoding attributes of the subscriber. This representation 
collapsed across some of the variables which, in the judgement of the experts, could be 
lumped together (e.g., different types of calls to the customer service department), and 
expanded on others (e.g., translating the scalar length-of-time-with-carrier to a multidi­
mensional basis-function representation, where the receptive-field centers of the basis 
functions were suggested by the domain experts), and performed transformations of other 
variables (e.g., ratios of two variables, or time-series regression parameters). 

3 PREDICTORS 
The task is to predict the probability of churn from the vector encoding attributes of the 
subscriber. We compared the churn-prediction performance of two classes of models: logit 
regression and a nonlinear neural network with a single hidden layer and weight decay 
(Bishop, 1995). The neural network model class was parameterized by the number of units 
in the hidden layer and the weight decay coefficient. We originally anticipated that we 
would require some model selection procedure, but it turned out that the results were 
remarkably insensitive to the choice of the two neural network parameters; weight decay 
up to a point seemed to have little effect, and beyond that point it was harmful, and varying 
the number of hidden units from 5 to 40 yielded nearly identical performance. We likely 
were not in a situation where overfitting was an issue, due to the large quantity of data 
available; hence increasing the model complexity (either by increasing the number of hid­
den units or decreasing weight decay) had little cost. 

Rather than selecting a single neural network model, we averaged the predictions of 
an ensemble of models which varied in the two model parameters. The average was uni­
formly weighted. 

4 METHODOLOGY 
We constructed four predictors by combining each of the two model classes (logit regres­
sion and neural network) with each of the two subscriber representations (naive and 
sophisticated). For each predictor, we performed a ten-fold cross validation study, utilizing 
the same splits across predictors. In each split of the data, the ratio of churn to no churn 
examples in the training and validation sets was the same as in the overall data set. 

For the neural net models, the input variables were centered by subtracting the means 
and scaled by dividing by their standard deviation. Input values were restricted to lie in the 
range [--4, +4]. Networks were trained until they reached a local minimum in error. 

5 RESULTS AND DISCUSSION 

5.1 CHURN PREDICTION 

For each of the four predictors, we obtain a predicted probability of churn for each sub­
scriber in the data set by merging the test sets from the ten data splits . Because decision 
making ultimately requires a "churn" or "no churn" prediction. the continuous probability 
measure must be thresholded to obtain a discrete predicted outcome. 
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For a given threshold, we determine the proportion of churners who are correctly 
identified as churners (the hit rate), and the proportion of nonchurners who are correctly 
identified as nonchurners (the rejection rate). Plotting the hit rate against the rejection rate 
for various thresholds, we obtain an ROC curve (Green & Swets, 1966). In Figure 2, the 
closer a curve comes to the upper right corner of the graph-lOO% correct prediction of 
churn and 100% correct prediction of nonchurn-the better is the predictor at discriminat­
ing churn from nonchurn. The dotted diagonal line indicates no discriminability: If a pre­
dictor randomly classifies x% of cases as churn, it is expected to obtain a hit rate of x% 
and a rejection rate of (lOO--x)%. 

As the Figure indicates, discriminability is clearly higher for the sophisticated repre­
sentation than for the naive representation. Further, for the sophisticated representation at 
least, the nonlinear neural net outperforms the logit regression. It appears that the neural 
net can better exploit nonlinear structure in the sophisticated representation than in the 
naive representation, perhaps due to the basis-function representation of key variables. 
Although the four predictors appear to yield similar curves, they produce large differences 
in estimated cost savings. We describe how we estimate cost savings next. 

5.2 DECISION MAKING 

Based on a subscriber's predicted churn probability, we must decide whether to offer the 
subscriber some incentive to remain with the carrier, which will presumably reduce the 
likelihood of churn. The incentive will be offered to any subscriber whose churn probabil­
ity is above a certain threshold. The threshold will be selected to maximize the expected 
cost savings to the carrier; we will refer to this as the optimal decision-making policy. 

The cost savings will depend not only on the discriminative ability of the predictor, 
but also on: the cost to the carrier of providing the incentive, denoted Ci (the cost to the 
carrier may be much lower than the value to the subscriber, e.g., when air time is offered); 
the time horizon over which the incentive has an effect on the subscriber's behavior; the 
reduction in probability that the subscriber will leave within the time horizon as a result of 
the incentive, Pi; and the lost-revenue cost that results when a subscriber churns, Ct. 
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FIGURE 2. Test-set performance for the four predictors. Each curve shows, for various 
thresholds, the ability of a predictor to correctly identify churn (x axis) and nonchum (y axis). 
The more bowed a curve, the better able a predictor is at discriminating churn from 
nonchurn. 
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We assume a time horizon of six months. We also assume that the lost revenue as a 
result of churn is the average subscriber bill over the time horizon, along with a fixed cost 
of $500 to acquire a replacement subscriber. (This acquisition cost is higher than the typi­
cal cost we stated earlier because subscribers in this data base are high valued, and often 
must be replaced with multiple low-value subscribers to achieve the same revenue.) To 
estimate cost savings, the parameters Ci' Pi' and C, are combined with four statistics 
obtained from a predictor: 

N(pL,aL): 

N(pS,aL): 

N(pL,aS): 
N(pS,aS): 

number of subscribers who are predicted to leave (churn) and who actu­
ally leave barring intervention 
number of subscribers who are predicted to stay (nonchurn) and who 

actually leave barring intervention 
number of subscribers who are predicted to leave and who actually stay 
number of subscribers who are predicted to stay and who actually stay 

Given these statistics, the net cost to the carrier of performing no intervention is: 

net(no intervention) = [ N(pL,aL) + N(pS,aL) ] C, 

This equation says that whether or not churn is predicted, the subscriber will leave, and the 
cost per subscriber will be C,. The net cost of providing an incentive to all subscribers 
whom are predicted to churn can also be estimated: 

net(incentive) = [N(pL,aL) + N(pL,aS)] q + [Pi N(pL,aL) + N(pS,aL)] C, 

This equation says that the cost of offering the incentive, C i ' is incurred for all subscribers 
for who are predicted to churn, but the lost revenue cost will decrease by a fraction Pi for 
the subscribers who are correctly predicted to churn. The savings to the carrier as a result 
of offering incentives based on the churn predictor is then 

savings per churnable subscriber = 
[ net(no intervention) - net(incentive)] / [N(pL,aL) + N(pS,aL)] 

The contour plots in Figure 3 show expected savings per churnable subscriber, for a 
range of values of q, Pi, and C" based on the optimal policy and the sophisticated neural­
net predictor. Each plot assumes a different subscriber retention rate (= I-Pi) given inter­
vention. The "25% retention rate" graph supposes that 25% of the churning subscribers 
who are offered an incentive wiII decide to remain with the carrier over the time horizon of 
six months. For each plot, the cost of intervention (q) is varied along the x-axis, and the 
average monthly bill is varied along the y-axis. (The average monthly biII is converted to 
lost revenue, C" by computing the total biII within the time horizon and adding the sub­
scriber acquisition cost.) The shading of a region in the plot indicates the expected savings 
assuming the specified retention rate is achieved by offering the incentive. The grey-level 
bar to the right of each plot translates the shading into dollar savings per subscriber who 
will churn barring intervention. Because the cost of the incentive is factored into the sav­
ings estimate, the estimate is actually the net return to the carrier. 

The white region in the lower right portion of each graph is the region in which no 
cost savings will be obtained. As the graphs clearly show, if the cost of the incentive 
needed to achieve a certain retention rate is low and the cost of lost revenue is high, signif­
icant per-subscriber savings can be obtained. 

As one might suspect in examining the plots, what's important for determining per­
subscriber savings is the ratio of the incentive cost to the average monthly bill. The plots 
clearly show that for a wide range of assumptions concerning the average monthly bill, 
incentive cost, and retention rate, a significant cost savings is realized. 

The plots assume that all subscribers identified by the predictor can be contacted and 
offered the incentive. If only some fraction F of aII subscribers are contacted, then the esti­
mated savings indicated by the plot should be multiplied by F. 

To pin down a likely scenario, it is reasonable to assume that 50% of subscribers can 
be contacted, 35% of whom will be retained by offering an incentive that costs the carrier 
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FIGURE 3. Expected savings to the carrier per chumable subscriber, under a variety of 
assumptions concerning intervention cost, average monthly bill of subscriber, and retention 
rate that will be achieved by offering an incentive to a churnable subscriber. 

$75, and in our data base, the average monthly bill is $234. Under this scenario, the 
expected savings-above and beyond recovering the incentive cost-to the carrier is $93 
based on the sophisticated neural net predictor. In contrast, the expected savings is only 
$47 based on the naive neural net predictor, and $81 based on the sophisticated logistic 
regression model. As we originally conjectured, both the nonlinearity of the neural net and 
the bias provided by the sophisticated representation are adding value to the predictions. 

Our ongoing research involves extending these initial results in a several directions. 
First, we have confirmed our positive results with data from a different time window, and 
for test data from a later time window than the training data (as would be necessary in 
real-world usage). Second, we have further tuned and augmented our sophisticated repre­
sentation to obtain higher prediction accuracy, and are now awaiting additional data to 
ensure the result replicates. Third, we are applying a variety of techniques, including sen­
sitivity analysis and committee and boosting techniques, to further improve prediction 
accuracy. And fourth, we have begun to explore the consequences of iterating the decision 
making process and evaluating savings over an extended time period. Regardless of these 
directions for future work, the results presented here show the promise of data mining in 
the domain of wireless telecommunications. As is often the case for decision-making sys­
tems, the predictor need not be a perfect discriminator to realize significant savings. 
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