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The conventional wisdom is that backprop nets with excess hidden units 
generalize poorly. We show that nets with excess capacity generalize 
well when trained with backprop and early stopping. Experiments sug­
gest two reasons for this: 1) Overfitting can vary significantly in different 
regions of the model. Excess capacity allows better fit to regions of high 
non-linearity, and backprop often avoids overfitting the regions of low 
non-linearity. 2) Regardless of size, nets learn task subcomponents in 
similar sequence. Big nets pass through stages similar to those learned 
by smaller nets. Early stopping can stop training the large net when it 
generalizes comparably to a smaller net. We also show that conjugate 
gradient can yield worse generalization because it overfits regions of low 
non-linearity when learning to fit regions of high non-linearity. 

1 Introduction 
It is commonly believed that large multi-layer perceptrons (MLPs) generalize poorly: nets 
with too much capacity overfit the training data. Restricting net capacity prevents overfit­
ting because the net has insufficient capacity to learn models that are too complex. This 
belief is consistent with a VC-dimension analysis of net capacity vs. generalization: the 
more free parameters in the net the larger the VC-dimension of the hypothesis space, and 
the less likely the training sample is large enough to select a (nearly) correct hypothesis [2]. 

Once it became feasible to train large nets on real problems, a number of MLP users noted 
that the overfitting they expected from nets with excess capacity did not occur. Large nets 
appeared to generalize as well as smaller nets - sometimes better. The earliest report 
of this that we are aware of is Martin and Pittman in 1991: "We find only marginal and 
inconsistent indications that constraining net capacity improves generalization" [7]. 

We present empirical results showing that MLPs with excess capacity often do not over­
fit. On the contrary, we observe that large nets often generalize better than small nets of 
sufficient capacity. Backprop appears to use excess capacity to better fit regions of high 
non-linearity, while still fitting regions of low non-linearity smoothly. (This desirable be­
havior can disappear if a fast training algorithm such as conjugate gradient is used instead 
of backprop.) Nets with excess capacity trained with backprop appear first to learn models 
similar to models learned by smaller nets . If early stopping is used, training of the large net 
can be halted when the large net's model is similar to models learned by smaller nets. 



ApprOXlUlat l o D -
T raini ng Data x 

>< T urgel Functi on '-Vilhau! Noise 

- 1 

Order 10 
15~----------~----------~ 

ApprOXLnlutlon -
Training Data >< 

>< TurS .. 1 Function '\Vi l h out N oise 

- 1 5 O~-----------'~O----------~20 

10 Hidden Nodes 

- 1 

Approxunatlo n 
T rain i ng Data 

T urg .. t Functi on 'Without Noise 

Order 20 

- 1 5 O~-----------'~O----------~20 

50 Hidden Nodes 

Figure 1: Top: Polynomial fit to data from y = sin( x /3) + v . Order 20 overfits. Bottom: Small and 
large MLPs fit to same data. The large MLP does not overfit significantly more than the small MLP. 

2 Overfitting 
Much has been written about overfitting and the bias/variance tradeoff in neural nets and 
other machine learning models [2, 12, 4, 8, 5, 13, 6] . The top of Figure 1 illustrates 
polynomial overfitting. We created a training dataset by evaluating y = sin( x /3) + lJ 

at 0 1 I I 2, ... ,20 where lJ is a uniformly distributed random variable between -0.25 and 
0.25. We fit polynomial models with orders 2-20 to the data. Underfitting occurs with 
order 2. The fit is good with order 10. As the order (and number of parameters) increases, 
however, significant overfitting (poor generalization) occurs. At order 20, the polynomial 
fits the training data well, but interpolates poorly. 

The bottom of Figure 1 shows MLPs fit to the data. We used a single hidden layer MLP, 
backpropagation (BP), and 100,000 stochastic updates. The learning rate was reduced 
linearly to zero from an initial rate of 0.5 (reducing the learning rate improves convergence, 
and linear reduction performs sintilarly to other schedules [3]). This schedule and number 
of updates trains the MLPs to completion. (We examine early stopping in Section 4.) As 
with polynomials, the smallest net with one hidden unit (HU) (4 weights weights) underfits 
the data. The fit is good with two HU (7 weights). Unlike polynomials, however, networks 
with 10 HU (31 weights) and 50 HU (151 weights) also yield good models. MLPs with 
seven times as many parameters as data points trained with BP do not significantly overfit 
this data. The experiments in Section 4 confirm that this bias of BP-trained MLPs towards 
smooth models is not limited to the simple 2-D problem used here. 

3 Local Overfitting 
Regularization methods such as weight decay typically assume that overfitting is a global 
phenomenon. But overfitting can vary significantly in different regions of a model. Figure 
2 shows polynomial fits for data generated from the following equation: 

{ - cos( x) + v 0 :::; x < iT 
Y = cos(3(x - iT)) + V iT:::; X :::; 2iT (Equation 1) 

Five equally spaced points were generated in the first region, and 15 in the second region, 
so that the two regions have different data densities and different underlying functions. 
Overfitting is different in the two regions. In Figure 2 the order 6 model fits the left region 
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Figure 2: Polynomial approximation of data from Equation 1 as the order of the model is increased 
from 2 to 16. The overfitting behavior differs in the left and right hand regions. 

well, but larger models overfit it. The order 6 model underfits the region on the right, and 
the order 10 model fits it better. No model performs well on both regions. Figure 3 shows 
MLPs trained on the same data (20,000 batch updates, learning rate linearly reduced to 
zero starting at 0.5). Small nets underfit. Larger nets, however, fit the entire function well 
without significant overfitting in the left region. 

The ability of MLPs to fit both regions of low and high non-linearity well (without over­
fitting) depends on the training algorithm. Conjugate gradient (CG) is the most popular 
second order method. CG results in lower training error for this problem, but overfits sig­
nificantly. Figure 4 shows results for 10 trials for BP and CG. Large BP nets generalize 
better on this problem -- even the optimal size CG net is prone to overfitting. The degree 
of overfitting varies in different regions. When the net is large enough to fit the region of 
high non-linearity, overfitting is often seen in the region of low non-linearity. 

4 Generalization, Network Capacity, and Early Stopping 
The results in Sections 2 and 3 suggest that BP nets are less prone to overfitting than 
expected. But MLPs can and do overfit. This section examines overfitting vs. net size 
on seven problems: NETtalk [10], 7 and 12 bit parity, an inverse kinematic model for a 
robot arm (thanks to Sebastian Thrun for the simulator), Base 1 and Base 2: two sonar 
modeling problems using data collected from a robot wondering hallways at CMU, and 
vision data used to learn to steer an autonomous car [9]. These problems exhibit a variety 
of characteristics. Some are Boolean. Others are continuous. Some have noise. Others are 
noise-free. Some have many inputs or outputs. Others have few inputs or outputs. 

4.1 Results 
For each problem we used small training sets (100-1000 points, depending on the problem) 
so that overfitting was possible. We trained fully connected feedforward MLPs with one 
hidden layer whose size varied from 2 to 800 HU (about 500-100,000 parameters). All the 
nets were trained with BP using stochastic updates, learning rate 0.1, and momentum 0.9. 

We used early stopping for regularization because it doesn't interfere with backprop's abil­
ity to control capacity locally. Early stopping combined with backprop is so effective that 
very large nets can be trained without significant overfitting. Section 4.2 explains why. 
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Figure 3: MLP approximation using backpropagation (BP) training of data from Equation 1 as the 
number of hidden units is increased. No significant overfitting can be seen. 
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Figure 4: Test Normalized Mean Squared Error for MLPs trained with BP (left) and CG (right). 
Results are shown with both box-whiskers plots and the mean plus and minus one standard deviation. 

Figure 5 shows generalization curves for four of the problems. Examining the results for 
all seven problems, we observe that on only three (Base 1, Base 2, and ALVINN), do 
nets that are too large yield worse generalization than smaller networks, but the loss is 
surprisingly small. Many trials were required before statistical tests confirmed that the 
differences between the optimal size net and the largest net were significant. Moreover, the 
results suggest that generalization is hurt more by using a net that is a little too small than 
by using one that is far too large, i.e., it is better to make nets too large than too small. 

For most tasks and net sizes, we trained well beyond the point where generalization per­
formance peaked. Because we had complete generalization curves, we noticed something 
unexpected. On some tasks, small nets overtrained considerably. The NETtalk graph in 
Figure 5 is a good example. Regularization (e.g., early stopping) is critical for nets of all 
sizes - not just ones that are too big. Nets with restricted capacity can overtrain. 

4.2 Why Excess Capacity Does Not Hurt 
BP nets initialized with small weights can develop large weights only after the number of 
updates is large. Thus BP nets consider hypotheses with small weights before hypotheses 
with large weights. Nets with large weights have more representational power, so simple 
hypotheses are explored before complex hypotheses. 
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Figure 5: Generalization peiformance vs . net size for four of the seven test problems. 

We analyzed what nets of different size learn while they are trained. We compared the 
input/output behavior of nets at different stages of learning on large samples of test pat­
terns. We compare the input/output behavior of two nets by computing the squared error 
between the predictions made by the two nets. If two nets make the same predictions for 
all test cases, they have learned the same model (even though each model is represented 
differently), and the squared error between the two models is zero. If two nets make dif­
ferent predictions for test cases, they have learned different models, and the squared error 
between them is large. This is not the error the models make predicting the true labels, but 
the difference between predictions made by two different models . Two models can have 
poor generalization (large error on true labels), but have near zero error compared to each 
other if they are similar models. But two models with good generalization (low error on 
true labels) must have low error compared to each other. 

The first graph in Figure 5 shows learning curves for nets with 10,25, 50, 100, 200, and 400 
HU trained on NETtalk. For each size, we saved the net from the epoch that generalized 
best on a large test set. This gives us the best model of each size found by backprop. We 
then trained a BP net with 800 HU, and after each epoch compared this net's model with 
the best models saved for nets of 10-400 HU. This lets us compare the sequence of models 
learned by the 800 HU net to the best models learned by smaller nets. 

Figure 6 shows this comparison. The horizontal axis is the number of backprop passes 
applied to the 800 HU net. The vertical axis is the error between the 800 HU net model 
and the best model for each smaller net. The 800 HU net starts off distant from the good 
smaller models, then becomes similar to the good models, and then diverges from them. 
This is expected. What is interesting is that the 800 HU net first becomes closest to the best 
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Figure 6: I/O similarity during training between an 800 hidden unit net and smaller nets (10, 25 , 50, 
100,200, and 400 hldden units) trained on NETtalk. 

10 HU net, then closest to the 25 HU net, then closest to the 50 HU net, etc. As it is trained, 
the 800 HU net learns a sequence of models similar to the models learned by smaller nets. 
If early stopping is used, training of the 800 HU net can be stopped when it behaves similar 
to the best model that could be learned with nets of 10, 25, 50, . .. HU. Large BP nets 
learn models similar to those learned by smaller nets. If a BP net with too much capacity 
would overjit, early stopping could stop training when the model was similar to a model 
that would have been learned by a smaller net of optimal size. 

The error between models is about 200-400, yet the generalization error is about 1600. 
The models are much closer to each other than any of them are to the true model. With 
early stopping, what counts is the closest approach of each model to the target function, 
not where models end up late in training. With early stopping there is little disadvantage 
to using models that are too large because their learning trajectories are similar to those 
followed by smaller nets of more optimal size. 

5 Related Work 
Our results show that models learned by backprop are biased towards "smooth" solutions. 
As nets with excess capacity are trained, they first explore smoother models similar to 
the models smaller nets would have learned. Weigend [11] performed an experiment that 
showed BP nets learn a problem's eigenvectors in sequence, learning the 1st eigenvector 
first, then the 2nd, etc. His result complements our analysis of what nets of different sizes 
learn: if large nets learn an eigenvector sequence similar to smaller nets, then the models 
learned by the large net will pass through intermediate stages similar to what is learned by 
small nets (but iff nets of different sizes learn the eigenvectors equally well, which is an 
assumption we do not need to make.) 

Theoretical work by [1] supports our results. Bartlett notes: "the VC-bounds seem loose; 
neural nets often peiform successfully with training sets that are considerably smaller than 
the number of weights." Bartlett shows (for classification) that the number of training 
samples only needs to grow according to A 21 (ignoring log factors) to avoid overfitting, 
where A is a bound on the total weight magnitudes and I is the number of layers in the 
network. This result suggests that a net with smaller weights will generalize better than a 
similar net with large weights. Examining the weights from BP and CG nets shows that BP 
training typically results in smaller weights. 



6 Summary 
Nets of all sizes overfit some problems. But generalization is surprisingly insensitive to 
excess capacity if the net is trained with backprop. Because BP nets with excess capacity 
learn a sequence of models functionally similar to what smaller nets learn, early stopping 
can often be used to stop training large nets when they have learned models similar to those 
learned by smaller nets of optimal size. This means there is little loss in generalization 
performance for nets with excess capacity if early stopping can be used. 

Overfitting is not a global phenomenon, although methods for controlling it often assume 
that it is. Overfitting can vary significantly in different regions of the model. MLPs trained 
with BP use excess parameters to improve fit in regions of high non-linearity, while not 
significantly overfitting other regions. Nets trained with conjugate gradient, however, are 
more sensitive to net size. BP nets appear to be better than CG nets at avoiding overfitting 
in regions with different degrees of non-linearity, perhaps because CG is more effective 
at learning more complex functions that overfit training data, while BP is biased toward 
learning smoother functions. 
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