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Abstract 

The human visual system encodes the chromatic signals conveyed 
by the three types of retinal cone photoreceptors in an opponent 
fashion. This color opponency has been shown to constitute an 
efficient encoding by spectral decorrelation of the receptor signals. 
We analyze the spatial and chromatic structure of natural scenes by 
decomposing the spectral images into a set of linear basis functions 
such that they constitute a representation with minimal redun­
dancy. Independent component analysis finds the basis functions 
that transforms the spatiochromatic data such that the outputs 
(activations) are statistically as independent as possible, i.e. least 
redundant. The resulting basis functions show strong opponency 
along an achromatic direction (luminance edges), along a blue­
yellow direction, and along a red-blue direction. Furthermore, the 
resulting activations have very sparse distributions, suggesting that 
the use of color opponency in the human visual system achieves a 
highly efficient representation of colors. Our findings suggest that 
color opponency is a result of the properties of natural spectra and 
not solely a consequence of the overlapping cone spectral sensitiv­
ities. 

1 Statistical structure of natural scenes 

Efficient encoding of visual sensory information is an important task for informa­
tion processing systems and its study may provide insights into coding principles 
of biological visual systems. An important goal of sensory information processing 
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is to transform the input signals such that the redundancy between the inputs is 
reduced. In natural scenes, the image intensity is highly predictable from neighbor­
ing measurements and an efficient representation preserves the information while 
the neuronal output is minimized. Recently, several methods have been proposed 
for finding efficient codes for achromatic images of natural scenes [1, 2, 3, 4]. While 
luminance dominates the structure of the visual world, color vision provides impor­
tant additional information about our environment. Therefore, we are interested 
in efficient, i.e. redundancy reducing representations for the chromatic structure of 
natural scenes. 

2 Learning efficient representation for chromatic image 

Our goal was to find efficient representations of the chromatic sensory information 
such that its spatial and chromatic redundancy is reduced significantly. The method 
we used for finding statistically efficient representations is independent component 
analysis (ICA). ICA is a way of finding a linear non-orthogonal co-ordinate system 
in multivariate data that minimizes mutual information among the axial projections 
of the data. The directions of the axes of this co-ordinate system (basis functions) 
are determined by both second and higher-order statistics of the original data, com­
pared to Principal Component Analysis (PCA) which is used solely in second order 
statistics and has orthogonal basis functions. The goal of ICA is to perform a 
linear transform which makes the resulting source outputs as statistically indepen­
dent from each other as possible [5]. ICA assumes an unknown source vector s 
with mutually independent components Si. A small patch of the observed image is 
stretched into a vector x that can be represented as a linear combination of sources 
components Si such that 

x=As, (1) 

where A is a scalar square matrix and the columns of A are the basis functions. 
Since A and s are unknown the goal of ICA is to adapt the basis functions by esti­
mating s so that the individual components Si are statistically independent and this 
adaptation process minimizes the mutual information between the components Si. 
A learning algorithm can be derived using the information maximization principle 
[5] or the maximum likelihood estimation (MLE) method which can be shown to be 
equivalent in this case. In our experiments, we used the infomax learning rule with 
natural gradient extension and the learning algorithm for the basis functions is 

(2) 

where I is the identity matrix, rp(s) = - 8p~(W3s and sT denotes the matrix trans­
pose of s . .6.A is the change of the basis functions that is added to A. The change 
in .6.A will converge to zero once the adaptation process is complete. Note that 
rp(s) requires a density model for p(Si). We used a parametric exponential power 
density P(Si) ex exp( -ISilqi) and simultaneously updated its shape by inferring the 
value qi to match the distribution of the estimated sources [6]. This is accomplished 
by finding the maximum posteriori value of qi given the observed data. The ICA 
algorithm can thus characterize a wide class of statistical distributions including 
uniform, Gaussian, Laplacian, and other so-called sub- and super-Gaussian densi­
ties. In other words, our experiments do not constrain the coefficients to have a 
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Figure 1: Linear decomposition of an observed spectral image patch into its basis 
functions. 

sparse distribution, unlike some previous methods [1, 2]. The algorithm converged 
to a solution of maximal independence and the distributions of the coefficients were 
approximated by exponential power densities. 

We investigated samples of spectral images of natural scenes as illustrated in Fig­
ure 1. We analyzed a set of hyperspectral images [7] with a size of 256 x 256 pixels. 
Each pixel is represented by radiance values for 31 wavebands of 10 nm width, 
sampled in 10 nm steps between 400 and 700 nm. The pixel size corresponds to 
0.056xO.056 deg of visual angle. The images were recorded around Bristol, either 
outdoors, or inside the glass houses of Bristol Botanical Gardens. We chose eight 
of these images which had been obtained outdoors under apparently different illu­
mination conditions. The vector of 31 spectral radiance values of each pixel was 
converted to a vector of 3 cone excitation values whose components were the inner 
products of the radiance vector with the vectors of L-, M-, and S-cone sensitivity 
values [8], respectively. From the entire image data set, 7x7 pixel image patches 
were chosen randomly, yielding 7x7x3 = 147 dimensional vectors. The learning 
process was done in 500 steps, each using a set of spectra of 40000 image patches, 
5000 chosen randomly from each of the eight images. A set of basis functions for 
7x7 pixel patches was obtained, with each pixel containing the logarithms of the 
excitations of the three human cone photo receptors that represented the receptor 
signals in the human retina [8, 9]. To visualize the learned basis functions, we 



used the method by Ruderman et al. [9] and plotted for each basis function a 7 x 7 
pixel matrix, with the color of each pixel indicating the combination of L, M, and 
S cone responses as follows. The values for each patch were normalized to values 
between a and 255, with a cone excitation corresponding to a value of 128. Thus, 
the R, G, and B components of each pixel represent the relative excitations of L, 
M, and S cones, respectively. To further illustrate the chromatic properties of the 
basis functions, we convert the L, M, S vector of each pixel to its projection onto 
the isoluminant plane of a cone-opponent color space similar to the color spaces of 
MacLeod and Boynton[lO] and Derrington et al[l1]. In our plots, the horizontal 
axis corresponds to the response of an L cone versus M cone opponent mechanism, 
the vertical axis corresponds to S cone modulation. For each pixel of the basis 
functions, a point is plotted at its corresponding location in that color space. The 
color of the points are the same as used for the pixels in the top part of the fig­
ure. Thus, although only the projection onto the isoluminant plane is shown, the 
third dimension (i.e., luminance) can be inferred by the brightness of the points. 
Figure 2a shows the learned leA basis functions in a pseudo color representation. 
Figure 2b shows the color space coordinates of the chromaticities of the pixels in 
each basis function. The peA basis functions and their corresponding color space 
coordinates are shown in Figure 2c and 2d respectively. Both representations are 
in order of decreasing L2-norm. The peA results show a global spatial represen­
tation and their opponent basis functions lie mostly along the coordinate axes of 
the cone-opponent color space. In addition, there are functions that imply mixtures 
of non-opponent colors. In contrast to peA basis functions, the leA basis func­
tions are localized and oriented. When ordered by decreasing L2-norm, achromatic 
basis functions tend to appear before chromatic basis functions. This reflects the 
fact that in the natural environment, luminance variations are generally larger than 
chromatic variations [7]. The achromatic basis functions are localized and oriented, 
similar to those found in the analysis of grayscale natural images [1, 2]. Most ofthe 
chromatic basis functions, particularly those with strong contributions, are color 
opponent, i.e., the chromaticities of their pixels lie roughly along a line through the 
origin of our color space. Most chromatic basis functions with relatively high con­
tributions are modulated between light blue and dark yellow, in the plane defined 
by luminance and S-cone modulation. Those with lower L2-norm are highly local­
ized, but still are mostly oriented. There are other chromatic basis functions with 
tilted orientations, corresponding to blue versus orange colors. The chromaticities 
of these basis functions occupy mainly the second and fourth quadrant. The basis 
functions with lowest contributions are less strictly aligned in color space, but still 
tend to be color opponent, mostly along a bluish-green/orange direction. There are 
no basis functions with chromaticities along the horizontal axis, corresponding to 
pure L versus M cone opponency, like peA basis functions in Figure 2d [9]. The 
tilted orientations of the opponency axes most likely reflects the distribution of the 
chromaticities in our images. In natural images, L-M and S coordinates in our 
color space are negatively correlated [12]. leA finds the directions that correspond 
to maximally decorrelated signals, i.e. extracts statistical structure of the inputs. 
peA did not yield basis functions in these directions, probably because it is limited 
by the orthogonality constraint. While it is known that chromatic properties of 
neurons in the lateral geniculate nucleus (LGN) of primates correspond to varia­
tions along the axes of cone-opponency ('cardinal axes') [11], cortical neurons show 
sensitivities for intermediate directions [13]. Since the results of peA and leA, 



respectively, match these differences qualitatively, we suspect that opponent coding 
along the 'cardinal directions' of cone opponency is used by the visual system to 
transmit reliably visual information to the cortex, where the information is recoded 
in order to better reflect the statistical structure of the environment [14]. 

3 Discussion 

This result shows that the independence criterion alone is sufficient to learn efficient 
image codes. Although no sparseness constraint was used, the obtained coefficients 
are extremely sparse, i.e. the data x are encoded in the sources s in such a way 
that the coefficients of s are mostly around zero; there is only a small percentage 
of informative values (non-zero coefficients). From an information coding perspec­
tive this assumes that we can encode and decode the chromatic image patches with 
only a small percentage of the basis functions. In contrast, Gaussian densities are 
not sparsely distributed and a large portion of the basis functions is required to 
represent the chromatic images. The normalized kurtosis value is one measure of 
sparseness and the average kurtosis value was 19.7 for leA, and 6.6 for peA. In­
terestingly the basis functions in Figure2a produced only sparse coefficients except 
for basis function 7 (green basis function) that resulted in a nearly uniform dis­
tribution, suggesting that this basis function is active almost all the time. The 
reason may be that a green color component is present in almost all image patches 
of the natural scenes. We repeated the experiment with different leA methods and 
obtained similar results. The basis functions obtained with the exponential power 
distributions or the simple Laplacian prior were statistically most efficient. In this 
sense, the basis functions that produce sparse distributions are statistically efficient 
codes. To quantitatively measure the encoding difference we compared the coding 
efficiency between leA and peA using Shannon's theorem to obtain a lower bound 
on the number of bits required to encode a spatiochromatic pattern [4]. The aver­
age number of bits required to encode 40000 patches randomly selected from the 8 
images in Figure 1 with a fixed noise coding precision of O'x = 0.059 was 1.73 bits 
for leA and 4.46 bits for peA. Note that the encoding difference for achromatic 
image patches using leA and peA is about 20% in favor of leA [4]. The encod­
ing difference in the chromatic case is significantly higher (> 100%) and suggests 
that there is a large amount of chromatic redundancy in the natural scenes. To 
verify our findings, we computed the average pairwise mutual information f in the 
original data (Ix = 0.1522), the peA representation (IPCA = 0.0123) and the leA 
representation (fICA = 0.0093). leA was able to further reduce the redundancy 
between its components, and its basis functions therefore represent more efficient 
codes. 

In general, the leA results support the argument that basis functions for efficient 
coding of chromatic natural images are non-orthogonal. In order to determine 
whether the color opponency is merely a result of correlation in the receptor sig­
nals due to the strong overlap of the photoreceptor sensitivities [15], we repeated 
the analysis, this time assuming hypothetical receptor sensitivities which do not 
overlap, but sample roughly in the same regions as the L-, M-, and S- cones. We 
used rectangular sensitivities with absorptions between 420 and 480 nm ("S"), 490 
and 550 nm ("M"), and 560 and 620 nm ("L"), respectively. The resulting basis 
functions were as strongly color opponent as for the case of overlapping cone sensi­
tivities. This suggests that the correlations of radiance values in natural spectra are 
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Figure 2: (a) 147 total lCA spatiochromatic structure of basis functions (7 by 7 
pixels and 3 colors) are shown in order of decreasing L2-norm, from top to bottom 
and left to right . The R, G, and B values of the color of each pixel correspond to 
the relative excitation of L-, M-, and S-cones, respectively. (b) Chromaticities of 
the lCA basis functions, plotted in cone-opponent color space coordinates. Each 
dot represents the coordinate of a pixel of the respective basis function, projected 
onto the isoluminant plane. Luminance can be inferred from the brightness of the 
dot. Horizontal axes: L- versus M-cone variation. Vertical axes: S-cone varia­
tion. (c) 147 PCA spatiochromatic basis functions and (d) Corresponding PCA 
chromaticities. 



sufficiently high to require a color opponent code in order to represent the chromatic 
structure efficiently. In summary, our findings strongly suggest color opponency is 
not a mere consequence of the overlapping cone spectral sensitivities but moreover 
an attempt to represent the intrinsic spatiochromatic structure of natural scenes in 
a statistically efficient manner. 
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