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Abstract 

We present a new view of image segmentation by pairwise simi­
larities. We interpret the similarities as edge flows in a Markov 
random walk and study the eigenvalues and eigenvectors of the 
walk's transition matrix. This interpretation shows that spectral 
methods for clustering and segmentation have a probabilistic foun­
dation. In particular, we prove that the Normalized Cut method 
arises naturally from our framework. Finally, the framework pro­
vides a principled method for learning the similarity function as a 
combination of features. 

1 Introduction 

This paper focuses on pairwise (or similarity-based) clustering and image segmen­
tation. In contrast to statistical clustering methods, that assume a probabilistic 
model that generates the observed data points (or pixels), pairwise clustering de­
fines a similarity function between pairs of points and then formulates a criterion 
(e.g. maximum total intracluster similarity) that the clustering must optimize. The 
optimality criteria quantify the intuitive notion that points in a cluster (or pixels 
in a segment) are similar, whereas points in different clusters are dissimilar. 

An increasingly popular approach to similarity based clustering and segmentation 
is by spectral methods. These methods use eigenvalues and eigenvectors of a matrix 
constructed from the pairwise similarity function. Spectral methods are sometimes 
regarded as continuous approximations of previously formulated discrete graph the­
oretical criteria as in image segmentation method of [9], or as in the web clustering 
method of [4, 2]. As demonstrated in [9,4], these methods are capable of delivering 
impressive segmentation/clustering results using simple low-level features. 

In spite of their practical successes, spectral methods are still incompletely un­
derstood. The main achievement of this work is to show that there is a simple 
probabilistic interpretation that can offer insights and serve as an analysis tool for 
all the spectral methods cited above. We view the pairwise similarities as edge flows 
in a Markov random walk and study the properties of the eigenvectors and values of 
the resulting transition matrix. Using this view, we were able to show that several 
of the above methods are subsumed by the Normalized Cut (NCut) segmentation 
algorithm of [9] in a sense that will be described. Therefore, in the following, we will 
focus on the NCut algorithm and will adopt the terminology of image segmentation 
(i.e. the data points are pixels and the set of all pixels is the image), keeping in 
mind that all the results are also valid for similarity based clustering. 



A probabilistic interpretation of NCut as a Markov random walk not only sheds 
new lights on why and how spectral methods work in segmentation, but also offers 
a principled way of learning the similarity function. A segmented image can provide 
a "target" transition matrix to which a learning algorithm matches in KL divergence 
the "learned" transition probabilities. The latter are output by a model as a function 
of a set of features measured from the training image. This is described in section 
5. Experimental results on learning segmenting objects with smooth and rounded 
shape is described in section 6. 

2 The Normalized Cut criterion and algorithm 

Here and in the following, an image will be represented by a set of pixels I. A 
segmentation is a partioning of I into mutually disjoint subsets. For each pair of 
pixels i, j E I a similarity Sij = Sji ~ 0 is given. In the NCut framework the 
similarities Sij are viewed as weights on the edges ij of a graph G over I. The 
matrix S = [Sij] plays the role of a "real-valued" adjacency matrix for G. Let 
di = LjEf Sij, called the degree of node i, and the volume of a set A c I be 
vol A = LiEA di · The set of edges between A and its complement A is an edge cut 
or shortly a cut. The normalized cut (NCut) criterion of [9] is a graph theoretical 
criterion for segmenting an image into two by minimizing 

(1) 

over all cuts A, A. Minimizing NCut means finding a cut ofrelatively small weight 
between two subsets with strong internal connections. In [9] it is shown that opti­
mizing NCut is NP hard. 

The NCut algorithm was introduced in [9] as a continuous approximation for solving 
the discrete minimum NCut problem by way of eigenvalues and eigenvectors. It 
uses the Laplacian matrix L = D - S where D is a diagonal matrix formed 
with the degrees of the nodes. The algorithm consists of solving the generalized 
eigenvalues/vectors problem 

Lx = )'Dx (2) 

The NCut algorithm focuses on the second smallest eigenvalue of (2) and its cor­
responding eigenvector, call them ),L and xL respectively. In [9] it is shown that 
when there is a partitioning of A, A of I such that 

L _ {a, i E A 
Xi - (3, i E A (3) 

then A, A is the optimal NCut and the value of the cut itself is NCut(A, A) 
This result represents the basis of spectral segmentation by normalized cuts. One 
solves the generalized spectral problem (2), then finds a partitioning of the elements 
of xL into two sets containing roughly equal values. The partitioning can be done by 
thresholding the elements. The partitioning of the eigenvector induces a partition 
on I which is the desired segmentation. 

As presented above, the NCut algorithm lacks a satisfactory intuitive explanation. 
In particular, the NCut algorithm and criterion offer little intuition about (1) what 
causes xL to be piecewise constant? (2) what happens when there are more than 
two segments and (3) how does the algorithm degrade its performance when xL is 
not piecewise constant? 



The random walk interpretation that we describe now will answer the first two ques­
tions as well as give a better understanding of what spectral clustering is achieving. 
We shall not approach the third issue here: instead, we point to the results of [2] 
that apply to the NCut algorithm as well. 

3 Markov walks and normalized cuts 

By "normalizing" the similarity matrix S one obtains the stochastic matrix 

P = D- 1S (4) 

whose row sums are all 1. As it is known from the theory of Markov random walks, 
Pij represents the probability of moving from node i to j in one step, given that 
we are in i. The eigenvalues of Pare A1 = 1 ~ A2 ~ ... An ~ -1; xl.. ·n are the 
eigenvectors. The first eigenvector of P is Xl =1, the vector whose elements are all 
Is. W.l.o.g we assume that no node has degree O. 

Let us now examine the spectral problem for the matrix P, namely the solutions of 
the equation 

Px = AX (5) 

Proposition 1 If A, X are solutions of (5) and P = D- 1 S, then (1 - A), x are 
solutions of (2). 

In other words, the NCut algorithm and the matrix P have the same eigenvectors; 
the eigenvalues of P are identical to 1 minues the generalized eigenvalues in (2). 
Proposition 1 shows the equivalence between the spectral problem formulated by 
the NCut algorithm and the eigenvalues/vectors of the stochastic matrix P. This 
also helps explaining why the NCut algorithm uses the second smallest generalized 
eigenvector: the smallest eigenvector of (2) corresponds to the largest eigenvector 
of P, which in most cases of interest is equal to 1 thus containing no information. 

The NCut criterion can also be understood in this framework. First define ?roo = 
[?ri"]iEI bY?ri" = !oh-. It is easy to verify that pT?roo = ?roo and thus that ?roo is a 
stationary distribution of the Markov chain. If the chain is ergodic, which happens 
under mild conditions [1], then ?roo is the only distribution over I with this property. 
Note also that the Markov chain is reversible because ?ri" Pij = ?rj Pji = Sij /voII. 
Define PAB = Pr[A -+ BIA] as the probability of the random walk transitioning 
from set A c I to set B C I in one step if the current state is in A and the random 
walk is started in its stationary distribution. 

From this it follows that 

EiEA,jEB Sij 
vol(A) 

NCut(A, A) = PAA + PAA 

(6) 

(7) 

If the NCut is small for a certain partition A, A then it means that the probabilities 
of evading set A, once the walk is in it and of evading its complement A are both 
small. Intuitively, we have partioned the set I into two parts such that the random 
walk, once in one of the parts, tends to remain in it. 

The NCut is strongly related to a the concept of low conductivity sets in a 
Markov random walk. A low conductivity set A is a subset of I such that 
h(A) = max( PAA , PAA ) is small. They have been studied in spectral graph 
theory in connection with the mixing time of Markov random walks [1]. More re­
cently, [2] uses them to define a new criterion for clustering. Not coincidentally, the 
heuristic analyzed there is strongly similar to the NCut algorithm. 



4 Stochastic matrices with piecewise constant eigenvectors 

In the following we will use the transition matrix P to achieve a better understanding 
of the NCut algorithm. Recall that the NCut algorithm looks at the second "largest" 
eigenvector of P, denoted by X2 and equal to X L, in order to obtain a partioning 
of I. We define a vector x to be piecewise constant relative to a partition ~ = 
(Al' A2 , ••. A k) of I iff Xi = Xj for i,j pixels in the same set As, s = 1, ... k. Since 
having piecewise constant eigenvectors is ideal case for spectral segmentation, it is 
important to understand when the matrix P has this desired property. We study 
when the first k out of n eigenvectors are piecewise constant. 

Proposition 2 Let P be a matrix with rows and columns indexed by I that has 
independent eigenvectors. Let ~ = (Al' A2 , •• . Ak) be a partition of I. Then, P 
has k eigenvectors that are piecewise constant w. r. t. ~ and correspond to non-zero 
eigenvalues if and only if the sums Pis = l:jEA. Pij are constant for all i E As' and 
all s, s' = 1, ... k and the matrix R = [Pss' ]s,s'=l ,."k (with Pss' = l:jEA~ Pij , i E 
As) is non-singular. 

Lemma 3 If the matrix P of dimension n is of the form P = D- l S with S sym­
metric and D non-singular then P has n independent eigenvectors. 

We call a stochastic matrix P satisfying the conditions of Proposition 2 a block­
stochastic matrix. Intuitively, Proposition 2 says that a stochastic matrix has piece­
wise constant eigenvectors if the underlying Markov chain can be aggregated into a 
Markov chain with state space ~ = {A l , . .. Ak } and transition probability matrix 
P. This opens interesting connections between the field of spectral segmentation 
and the body of work on aggregability or (lumpability) [3] of Markov chains. The 
proof of Proposition 2 is provided in [5]. 

Proposition 2 shows that a much broader condition exists for N cut algorithm to 
produce an exact segmentation/clustering solution. Such condition shows that in 
fact spectral clustering is able to group pixels by the similarity of their transition 
probabilities to subsets of I. Experiments [9] show that NCut works well on many 
graphs that have a sparse complex connection structure supporting this result with 
practical evidence. Proposition 2 generalizes previous results of [10]. 

The NCut algorithm and criterion is one of the recently proposed spectral segmenta­
tion methods. In image segmentation, there are algorithms of Perona and Freeman 
(PF) [7] and Scott and Longuet-Higgins (SLH) [8]. In web clustering, there are 
algorithms of Kleinberg[4] (K), the long known latent semantic analysis (LSA), and 
in the variant proposed by Kannan, Vempala and Yetta (KVV) [2]. It is easy to 
show that each of the above ideal situations imply that the resulting stochastic 
matrix P satisfies the conditions of Proposition 2 and thus the NCut algorithm 
will also work exactly in these situations. In this sense NCut subsumes PF, SLH 
and (certain variants of) K. Moreover, none of the three other methods takes into 
account more information than NCut does. Another important aspect of a spectral 
clustering algorithm is robustness. Empirical results of [10] show that NCut is at 
least as robust as PF and SLH. 

5 The framework for learning image segmentation 
The previous section stressed the connection between NCut as a criterion for image 
segmentation and searching for low conductivity sets in a random walk. Here we 
will exploit this connection to develop a framework for supervised learning of image 
segmentation. Our goal is to obtain an algorithm that starts with a training set of 



segmented images and with a set of features and learns a function of the features 
that produces correct segmentations, as shown in figure 1. 

Learning 
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Figure 1: The general framework for learning image segmentation. 

For simplicity, assume the training set consists of one image only and its correct 
segmentation. From the latter it is easy to obtain "ideal" or target transition prob­
abilities 

p .*. = {Oi ~ (j. A 
1J TAT' J EA. 

for i in segment A with IAI elements (8) 

We also have a predefined set of features r, q = 1, ... Q which measure similarity 
between two pixels according to different criteria and their values for 1. 

The model is the part of the framework that is subject to learning. It takes the 
features fi~ as inputs and outputs the global similarity measure Sij. For the present 

experiments we use the simple model Sij = eL:q Aql;; Intuitively, it represents 
a set of independent "experts", the factors eAql" voting on the probability of a 
transition i -+ j. 

In our framework, based on the fact that a segmentation is equivalent to a random 
walk, optimality is defined as the minimization of the conditional K ullback-Leibler 
(KL) divergence between the target probabilities Ptj and the transition probabili­
ties Pij obtained by normalizing Sij. Because P* is fixed, the above minimization 
is equivalent to maximizing the cross entropy between the two (conditional) distri­
butions, i.e. max J, where 

J = L I~I LPtj logPij 
iEI jEI 

(9) 

If we interpret the factor 1/lll as a uniform distribution over states 71"0 then the 
criterion in (9) is equivalent to the KL divergence between two distributions over 

transitions KL(Pi~jllPi-+j) where pt:j = 7I"?Pi~*) ' 

Maximizing J can be done via gradient ascent in the parameters A. We obtain 

oj _ 1 ('"' * f q '"' f q ) OAq - TIf ~ Pij ij - ~ Pij ij 
1J 1J 

(10) 

One can further note that the optimum of J corresponds to the solution of the 
following maximum entropy problem: 

maxH(jli) S.t. < fi~ > ... OP;l i = < f& > ... OP;ji for q = 1, ... Q (11) 
P;li 

Since this is a convex optimization problem, it has a unique optimum. 



6 Segmentation with shape and region information 
In this section, we exemplify our approach on a set of synthetic and real images and 
we use features carrying contour and shape information. First we use a set of local 
filer banks as edge detectors. They capture both edge strength and orientation. 
From this basic information we construct two features: the intervening contour 
(IC) and the co-linearity/co-circularity (CL). 

(a) (b) (c) 
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Figure 2: Features for segmenting objects with smooth rounded shape. (a) The edge 
strength provides a cue of region boundary. It biases against random walks in a direction 
orthogonal to an edge. (b) Edge orientation provides a cue for the object's shape. The 
induced edge flow is used to bias the random walk along the edge, and transitions between 
co-circular edge flows are encouraged. (c) Edge flow for the bump in figure 3. 
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Figure 3: "Bump" images (a)-(f) with gradually reduced contrast are used for training. 
(g) shows the relation between the image edge contrast and the learned value of AIC, 
demonstrating automatic adaptation to the dynamic range of the IC. (h) shows the de­
pendence on image contrast of ACL. At low image contrast, CL becomes more important. 

The first feature is based on the assumption that if two pixels are separated by an 
edge, then they are less likely to belong together(figure 2). In the random walk 
interpretation, we are less likely to walk in a direction perpendicular to an edge. 
The intervening contour[6] is computed by ifF = MAXkEI(i,nEdge(k), where l(i,j) 
is a line connecting pixel i and j, and Edge(k) is the edge strength at pixel k. 

While the IC provides a cue for region boundaries, the edge orientation provides a 
cue for object shape. Human visual studies suggest that the shape of an object's 
boundary has a strong influence on how objects are grouped. For example, a convex 
region is more likely to be perceived as a single object Thinking of segmentation 
as a random walk provides a natural way of exploiting this knowledge. Each dis­
crete edge in the image induces an edge flow in its neighborhood. To favor convex 
regions, we can further bias the random walk by enhancing the transition probabil­
ities between pixels with co-circular edge flow. Thus we define the CL feature as: 
JGL 2-cos(2a;)-cos(2aj) + 2-cos(2ai+aj) h d fi d . fi 2(b) 
ij = l-cos(ad l-cos(ao ) , were ai, aj are e ne as III gure . 

For training, we have constructed the set of "bump" images with varying image 
contrast, as shown in figure 3. Figure 4 shows segmentation results using the 
weights trained with the "bump" image in figure 3(c). 



Figure 4: Testing on real images: (a) test images; (b) canny edges computed with the 
Matlab "edge" function; (c) NCut segmentation computed using the weights learned on 
the image in 5(c). The system learns to prefer contiguous groups with smooth boundary. 
The canny edge map indicates that simply looking for edges is likely gives brittle and less 
meaningful segmentations. 

7 Conclusion 
The main contribution of our paper is showing that spectral segmentation methods 
have a probabilistic foundation. In the framework of random walks, we give a new 
interpretation to the NCut criterion and algorithm and a better understanding of 
its motivation. The probabilistic framework also allows us to define a principled 
criterion for supervised learning of image segmentation. 
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