
Active Learning for Parameter Estimation
in Bayesian Networks

Simon Tong
Computer Science Department

Stanford University
simon. tong@cs.stanford.edu

Daphne Koller
Computer Science Department

Stanford University
koller@cs.stanford.edu

Abstract
Bayesian networks are graphical representations of probability distributions. In virtually
all of the work on learning these networks, the assumption is that we are presented with
a data set consisting of randomly generated instances from the underlying distribution. In
many situations, however, we also have the option of active learning, where we have the
possibility of guiding the sampling process by querying for certain types of samples. This
paper addresses the problem of estimating the parameters of Bayesian networks in an active
learning setting. We provide a theoretical framework for this problem, and an algorithm
that chooses which active learning queries to generate based on the model learned so far.
We present experimental results showing that our active learning algorithm can significantly
reduce the need for training data in many situations.

1 Introduction
In many machine learning applications, the most time-consuming and costly task is the
collection of a sufficiently large data set. Thus, it is important to find ways to minimize the
number of instances required. One possible method for reducing the number of instances
is to choose better instances from which to learn. Almost universally, the machine learning
literature assumes that we are given a set of instances chosen randomly from the underlying
distribution. In this paper, we assume that the learner has the ability to guide the instances
it gets, selecting instances that are more likely to lead to more accurate models. This
approach is called active learning.

The possibility of active learning can arise naturally in a variety of domains, in several
variants. In selective active learning, we have the ability of explicitly asking for an example
of a certain "type"; i.e., we can ask for an full instance where some of the attributes take on
requested values. For example, if our domain involves webpages, the learner might be able
to ask a human teacher for examples of homepages of graduate students in a Computer Sci­
ence department. A variant of selective active learning is pool-based active learning, where
the learner has access to a large pool of instances, about which it knows only the value of
certain attributes. It can then ask for instances in this pool for which these known attributes
take on certain values. For example, one could redesign the U.S. census to have everyone
fill out only the short form; the active learner could then select among the respondents for
those that should fill out the more detailed long form. Another example is a cancer study
in which we have a list of people's ages and whether they smoke, and we can ask a subset
of these people to undergo a thorough examination.

In such active learning settings, we need a mechanism that tells us which instances
to select. This problem has been explored in the context of supervised learning [1, 2, 7,
9]. In this paper, we consider its application in the unsupervised learning task of density
estimation. We present a formal framework for active learning in Bayesian networks (BNs).

We assume that the graphical structure of the BN is fixed, and focus on the task of parameter
estimation. We define a notion of model accuracy, and provide an algorithm that selects
queries in a greedy way, designed to improve model accuracy as much as possible. At first
sight, the applicability of active learning to density estimation is unclear. Given that we are
not simply sampling, it is initially not clear that an active learning algorithm even learns
the correct density. In fact we can actually show that our algorithm is consistent, i.e., it
converges to the right density at the limit. Furthermore, it is not clear that active learning
is necessarily beneficial in this setting. After all, if we are trying to estimate a distribution,
then random samples from that distribution would seem the best source. Surprisingly,
we provide empirical evidence showing that, in a range of interesting circumstances, our
approach learns from significantly fewer instances than random sampling.

2 Learning Bayesian Networks

Let X = {Xl, ... ,Xn } be a set of random variables, with each variable Xi taking values
in some finite domain Dom[XiJ. A Bayesian network over X is a pair (9, 0) that represents
a distribution over the joint space of X. Q is a directed acyclic graph, whose nodes corre­
spond to the random variables in X and whose structure encodes conditional independence
properties about the joint distribution. We use U i to denote the set of parents of Xi. 0 is
a set of parameters which quantify the network by specifying the conditional probability
distributions (CPDs) P(Xi I U i). We assume that the CPD of each node consists of a
separate multinomial distribution over Dom[XiJ for each instantiation u of the parents U i .

Hence, we have a parameter OXi;lu for each Xij E Dom[XiJ; we use OXilu to represent the
vector of parameters associated with the multinomial P(Xi I u).

Our focus is on the parameter estimation task: we are given the network structure Q,
and our goal is to use data to estimate the network parameters O. We will use Bayesian
parameter estimation, keeping a density over possible parameter values. As usual [5], we
make the assumption of parameter independence, which allows us to represent the joint
distribution p(0) as a set of independent distributions, one for each multinomial 0 Xi I u.

For multinomials, the conjugate prior is a Dirichlet distribution [4], which is param­
eterized by hyperparameters aj E IR+, with a* = l:j aj. Intuitively, aj represents
the number of "imaginary samples" observed prior to observing any data. In particular,
if X is distributed multinomial with parameters 0 = (01, ... , Or), and p(O) is Dirichlet,
then the probability that our next observation is Xj is aj/a*. If we obtain a new instance
X = Xj sampled from this distribution, then our posterior distribution p(O) is also dis­
tributed Dirichlet with hyperparameters (al, ... ,aj + 1, ... ,ar). In a BN with the pa­
rameter independence assumption, we have a Dirichlet distribution for every multinomial
distribution OXi lu. Given a distribution p(O), we use a Xi; lu to denote the hyperparameter
corresponding to the parameter OXi; lu.

3 Active Learning

Assume we start out with a network structure Q and a prior distribution p(0) over the
parameters of Q. In a standard machine learning framework, data instances are indepen­
dently, randomly sampled from some underlying distribution. In an active learning setting,
we have the ability to request certain types of instances. We formalize this idea by assum­
ing that some subset C of the variables are controllable. The learner can select a subset of
variables Q C C and a particular instantiation q to Q. The request Q = q is called a query.
The result of such a query is a randomly sampled instance x conditioned on Q = q.

A (myopic) active learner e is a querying function that takes Q and p(O), and selects
a query Q = q. It takes the resulting instance x, and uses it to update its distribution
p(O) to obtain a posterior p'(O). It then repeats the process, using p' for p. We note that
p(0) summarizes all the relevant aspects of the data seen so far, so that we do not need
to maintain the history of previous instances. To fully specify the algorithm, we need to
address two issues: we need to describe how our parameter distribution is updated given

that x is not a random sample, and we need to construct a mechanism for selecting the next
query based on p.

To answer the first issue assume for simplicity that our query is Q = q for a single node
Q. First, it is clear that we cannot use the resulting instance x to update the parameters of
the node Q itself. However, we also have a more subtle problem. Consider a parent U of
Q. Although x does give us information about the distribution of U, it is not information
that we can conveniently use. Intuitively, P(U I Q = q) is sampled from a distribution
specified by a complex formula involving multiple parameters. We avoid this problem
simply by ignoring the information provided by x on nodes that are "upstream" of Q.
More generally, we define a variable Y to be updateable in the context of a selective query
Q if it is not in Q or an ancestor of a node in Q.

Our update rule is now very simple. Given a prior distribution p(9) and an instance
x from a query Q = q, we do standard Bayesian updating, as in the case of randomly
sampled instances, but we update only the Dirichlet distributions of update able nodes. We
use p(9 t Q = q, x) to denote the distribution pi (9) obtained from this algorithm; this can
be read as "the density of 9 after asking query q and obtaining the response x".

Our second task is to construct an algorithm for deciding on our next query given our
current distribution p. The key step in our approach is the definition of a measure for the
quality of our learned model. This allows us to evaluate the extent to which various in­
stances would improve the quality of our model, thereby providing us with an approach
for selecting the next query to perform. Our formulation is based on the framework of
Bayesian point estimation. In the Bayesian learning framework, we maintain a distribution
p(9) over all of the model parameters. However, when we are asked to reason using the
model, we typically "collapse" this distribution over parameters, generate a single repre­
sentative model iJ, and answer questions relative to that. If we choose to use iJ, whereas the
"true" model is 9*, we incur some loss Loss(iJ II 9*). Our goal is to minimize this loss. Of
course, we do not have access to 9*. However, our posterior distribution p(9) represents
our "optimal" beliefs about the different possible values of 9*, given our prior knowledge
and the evidence. Therefore, we can define the risk of a particular iJ with respect to pas:

Ee~p(e) [Loss (6 II iJ)] = 10 Loss (9 II iJ)p(9) d9. (1)

We then define the Bayesian point estimate to be the value of iJ that minimizes the risk.
We shall only be considering using the Bayesian point estimate, thus we define the risk of
a density p, Risk(p(9)), to be the risk of the optimal iJ with respect to p.

The risk of our density p(9) is our measure for the quality of our current state of knowl­
edge, as represented by p(9) . In a greedy scheme, our goal is to obtain an instance x
such that the risk of the pi obtained by updating p with x is lowest. Of course, we do not
know exactly which x we are going to get. We know only that it will be sampled from a
distribution induced by our query. Our expected posterior risk is therefore:

ExPRisk(p(9) I Q = q) = Ee~p(e)Ex~Pe(XIQ=q)Risk(p(9 t Q = q, x)). (2)

This definition leads immediately to the following simple algorithm: For each candidate
query Q = q, we evaluate the expected posterior risk, and then select the query for which
it is lowest.

4 Active Learning Algorithm
To obtain a concrete algorithm from the active learning framework shown in the previous
section, we must pick a loss function. There are many possible choices, but perhaps the
best justified is the relative entropy or Kullback-Leibler divergence (KL-divergence) [3] :

KL(9 II iJ) = ~x Pe(x) In ;:~:~. The KL-divergence has several independentjustifica­

tions, and a variety of properties that make it particularly suitable as a measure of distance
between distributions. We therefore proceed in this paper using KL-divergence as our

loss function. (An analogous analysis can be carried through for another very natural loss
function: negative loglikelihood of future data - in the case of multinomial CPDs with
Dirichlet densities over the parameters this results in an identical final algorithm.)

We now want to find an efficient approach to computing the risk. Two properties of
KL-divergence tum out to be crucial. The first is that the value 0 that minimizes the risk
relative to p is the mean value of the parameters, Ee~p(9) [0]. For a Bayesian network
with independent Dirichlet distributions over the parameters, this expression reduces to
Ox _ -Iu = O!Zij Iu , the standard (Bayesian) approach used for collapsing a distribution over

"3 O'Zli.lu

BN models into a single model. The second observation is that, for BNs, KL-divergence
decomposes with the graphical structure of the network:

KL(OIIO') = L KL(P9 (Xi I Ui) II P9 ,(Xi lUi)), (3)
i

where KL(P(Xi I U i) II P'(Xi I U i)) is the conditional KL-divergence and is given by
:Eu P(u)KL(P(Xi I u) II P'(Xi I u)) . With these two facts, we can prove the following:
Theorem 4.1 Let f(a) be the Gamma junction, \[I" (a) be the digamma func­
tion f'(a)/f(a), and H be the entropy junction. Define 8(al,oo.,ar) =
:E;=l [~ (\[I"(aj + 1) - \[I"(a* + 1)) + H (~, ... , ~)]. Then the risk decomposes as:

Risk(p(O)) = L L Pij(u)8(aXillu,oo.,aXirilu)' (4)

i uEDom[Ui]
Eq. (4) gives us a concrete expression for evaluating the risk of p(O). However, to evaluate a
potential query, we also need its expected posterior risk. Recall that this is the expectation,
over all possible answers to the query, of the risk of the posterior distribution p'. In other
words, it is an average over an exponentially large set of possibilities.

To understand how we can evaluate this expression efficiently, we first consider a much
simpler case. Consider a BN where we have only one child node X and its parents U, i.e.,
the only edges are from the nodes U to X . We also restrict attention to queries where we
control all and only the parents U. In this case, a query q is an instantiation to U, and the
possible outcomes to the query are the possible values of the variable X.

The expected posterior risk contains a term for each variable Xi and each instantiation
to its parents. In particular, it contains a term for each of the parent variables U. However,
as these variables are not updateable, their hyperparameters remain the same following any
query q. Hence, their contribution to the risk is the same in every p(0 t U = q, x) , and in
our prior p(0). Thus, we can ignore the terms corresponding to the parents, and focus on
the terms associated with the conditional distribution P(X I U). Hence, we have:

Riskx(p(O)) = LPij(u)8(aXllu,oo.,axrlu) (5)
u

ExPRiskx(p(O) I U = q)
j u

where a~jlu is the hyperparameter in p(O t Q = q, Xj) .
Rather than evaluating the expected posterior risk directly, we will evaluate the reduc­

tion in risk obtained by asking a query U = q:
~(X I q) = Risk(P(O)) - ExPRisk(P(O) I q) = Riskx(P(O)) - ExPRiskx(P(O) I q)
Our first key observatIOn relies on the fact that the variables tl are not updateable for this

query, so that their hyperparameters do not change. Hence, Pij (u) and Pij' (u) are the same.
The second observation is that the hyperparameters corresponding to an instantiation u are
the same in p and p' except for u = q. Hence, terms cancel and the expression simplifies to:

Pij (q) (8(aX1Iq, 00 • , aXrlq) - :Ej Pij(Xj I q)8(a~1Iq' 00 • , a~r lq)) . By taking advantage
of certain functional properties of \[1", we finally obtain:

~(X I q) = Pij(q) (H (:Zllq, ... , :zrlq) -" Pij(Xj I q)H (:~llq, 00. , :~rlq)) (7)
z.lq ZI.lq L..J ZI.lq ZI . lq

j

If we now select our query q so as to maximize the difference between our current risk
and the expected posterior risk, we get a very natural behavior: We will select the query
q that leads to the greatest reduction in the entropy of X given its parents. It is also here
that we can gain an insight as to where active learning has an edge over random sampling.
Consider one situation in which ql which is 100 times less likely than ~; ql will lead us
to update a parameter whose current density is Dirichlet(l, 1), whereas q2 will lead us to
update a parameter whose current density is Dirichlet(100, 100). However, according to
~, updating the former is worth more than the latter. In other words, if we are confident
about commonly occurring situations, it is worth more to ask about the rare cases.

We now generalize this derivation to the case of an arbitrary BN and an arbitrary query.
Here, our average over possible query answers encompasses exponentially many terms.
Fortunately, we can utilize the structure of the BN to avoid an exhaustive enumeration.
Theorem 4.2 For an arbitrary BN and an arbitrary query Q = q, the expected KL poste­
rior risk decomposes as:

ExPRisk(P(O) 1 Q = q) = L: L: Pij(u 1 Q = q)ExPRiskxi (P(O) 1 Vi = u).
i uEDom[u;]

In other words, the expected posterior risk is a weighted sum of expected posterior risks for
conditional distributions of individual nodes Xi, where for each node we consider "queries"
that are complete instantiations to the parents Vi of Xi .

We now have similar decompositions for the risk and the expected posterior risk. The
obvious next step is to consider the difference between them, and then simplify it as we
did for the case of a single variable. Unfortunately, in the case of general BNs, we can
no longer exploit one of our main simplifying assumptions. Recall that, in the expression
for the risk (Eq. (5», the term involving Xi and u is weighted by Pij (u). In the expected
posterior risk, the weight is Pij' (u). In the case of a single node and a full parent query, the
hyperparameters of the parents could not change, so these two weights were necessarily
the same. In the more general setting, an instantiation x can change hyperparameters all
through the network, leading to different weights.

However, we believe that a single data instance will not usually lead to a dramatic
change in the distributions. Hence, these weights are likely to be quite close. To simplify
the formula (and the associated computation), we therefore choose to approximate the pos­
terior probability Pij' (u) using the prior probability Pij(u). Under this assumption, we can
use the same simplification as we did in the single node case.

Assuming that this approximation is a good one, we have that:

~(X 1 q) = Risk(p(O)) - ExPRisk(p(O) 1 q) ~ L: L: Pij(u 1 q)~(Xi 1 u),
i uEDom[Ui]

(8)
where ~(Xi 1 u) is as defined in Eq. (7). Notice that we actually only need to sum over
the update able XiS since ~(Xi 1 u) will be zero for all non-updateable XiS.

The above analysis provides us with an efficient implementation of our general active
learning scheme. We simply choose a set of variables in the Bayesian network that we wish
to control, and for each instantiation of the controllable variables we compute the expected
change in risk given by Eq. (8). We then ask the query with the greatest expected change
and update the parameters of the updateable nodes.

We now consider the computational complexity of the algorithm. It turns out that, for
each potential query, all of the desired quantities can be obtained via two inference passes
using a standard join tree algorithm [6] . Thus, the run time complexity of the algorithm is:
0(1 QI . cost of BN join tree inference), where Q is the set of candidate queries.

Our algorithm (approximately) finds the query that reduces the expected risk the most.
We can show that our specific querying scheme (including the approximation) is consistent.
As we mentioned before, this statement is non-trivial and depends heavily on the specific
querying algorithm.

,
•
I" o

, ,
K

;; ;;

,,~" ~---;;;-~--c,,:c-~,C,;-" ~---;;;-~---!. "~~"-----c~--~,~""-----c~-----!
NOO1 WoIQu NconberofQ...ene&

(a) (b) (c)

Figure 1: (a) Alann network with three controllable nodes. (b) Asia network with two controllable
nodes. (c) Cancer network with one controllable node. The axes are zoomed for resolution.

Theorem 4.3 Let U be the set of nodes which are updateable for at least one candidate
query at each querying step. Assuming that the underlying true distribution is not determin­
istic, then our querying algorithm produces consistent estimates for the CPD parameters
of every member ofU.

5 Experimental Results

We performed experiments on three commonly used networks: Alarm, Asia and Can­
cer. Alarm has 37 nodes and 518 independent parameters, Asia has eight nodes and 18
independent parameters, and Cancer has five nodes and 11 independent parameters.

We first needed to set the priors for each network. We use the standard approach [5]
of eliciting a network and an equivalent sample size. In our experiments, we assumed that
we had fairly good background knowledge of the domain. To simulate this, we obtained
our prior by sampling a few hundred instances from the true network and used the counts
(together with smoothing from a uniform prior) as our prior. This is akin to asking for a
prior network from a domain expert, or using an existing set of complete data to find initial
settings of the parameters. We then compared refining the parameters either by using active
learning or by random sampling. We permitted the active learner to abstain from choosing
a value for a controlled node if it did not wish to -- that node is then sampled as usual.

Figure 1 presents the results for the three networks. The graphs compare the KL­
divergence between the learned networks and the true network that is generating the data.
We see that active learning provides a substantial improvement in all three networks. The
improvement in the Alarm network is particularly striking given that we had control of
just three of the 36 nodes. The extent of the improvement depends on the extent to which
queries allow us to reach rare events. For example, Smoking is one of the controllable vari­
ables in the Asia network. In the original network, P(Smoking) = 0.5. Although there was
a significant gain by using active learning in this network, we found that there was a greater
increase in performance if we altered the generating network to have P(Smoking) = 0.9;
this is the graph that is shown.

We also experimented with specifying uniform priors with a small equivalent sample
size. Here, we obtained significant benefit in the Asia network, and some marginal im­
provement in the other two. One possible reason is that the improvement is "washed out"
by randomness, as the active learner and standard learner are learning from different in­
stances. Another explanation is that the approximation in Eq. (8) may not hold as well when
the prior p(0) is uninformed and thereby easily perturbed even by a single instance. This
indicates that our algorithm may perform best when refining an existing domain model.

Overall, we found that in almost all situations active learning performed as well as or
better than random sampling. The situations where active learning produced most benefit
were, unsurprisingly, those in which the prior was confident and correct about the com­
monly occurring cases and uncertain and incorrect about the rare ones. Clearly, this is the
precisely the scenario we are most likely to encounter in practice when the prior is elicited

from an expert. By experimenting with forcing different priors we found that active learn­
ing was worse in one type of situation: where the prior was confident yet incorrect about
the commonly occurring cases and uncertain but actually correct about the rare ones. This
type of scenario is unlikely to occur in practice. Another factor affecting the performance
was the degree to which the controllable nodes could influence the updateable nodes.

6 Discussion and Conclusions

We have presented a formal framework and resulting querying algorithm for parameter
estimation in Bayesian networks. To our knowledge, this is one of the first applications of
active learning in an unsupervised context. Our algorithm uses parameter distributions to
guide the learner to ask queries that will improve the quality of its estimate the most.

BN active learning can also be performed in a causal setting. A query now acts as
experiment - it intervenes in a model and forces variables to take particular values. Using
Pearl's intervention theory [8], we can easily extend our analysis to deal with this case. The
only difference is that the notion of an updateable node is even simpler - any node that is
not part of a query is updateable. Regrettably, space prohibits a more complete exposition.

We have demonstrated that active learning can have significant advantages for the task
of parameter estimation in BNs, particularly in the case where our parameter prior is of the
type that a human expert is likely to provide. Intuitively, the benefit comes from estimating
the parameters associated with rare events. Although it is less important to estimate the
probabilities of rare events accurately, the number of instances obtained if we randomly
sample from the distribution is still not enough. We note that this advantage arises even
when we have used a loss function that considers only the accuracy of the distribution. In
many practical settings such as medical or fault diagnosis, the rare cases are even more
important, as they are often the ones that it is critical for the system to deal with correctly.

A further direction that we are pursuing is active learning for the causal structure of a
domain. In other words, we are presented with a domain whose causal structure we wish
to understand and we want to know the best sequence of experiments to perform.

Acknowledgements The experiments were performed using the PHROG system, devel­
oped primarily by Lise Getoor, Uri Lerner, and Ben Taskar. Thanks to Carlos Guestrin
and Andrew Ng for helpful discussions. The work was supported by DARPA's information
Assurance program under subcontract to SRI International, and by ARO grant DAAH04-
96-1-0341 under the MURI program "Integrated Approach to Intelligent Systems".

References
[1] A.c. Atkinson and A.N. Donev. Optimal Experimental Designs. Oxford University Press, 1992.

[2] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning with statistical models. Journal of
Artificial intelligence Research, 4, 1996.

[3] T.M Cover and J.A. Thomas. information Theory. Wiley, 1991.

[4] M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

[5] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20: 197-243, 1995.

[6] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical struc­
tures and their application to expert systems. J. Royal Statistical Society, B 50(2), 1988.

[7] D. MacKay. Information-based objective functions for active data selection. Neural Computa­
tion,4:590-604, 1992.

[8] J. Pearl. Causality: Models, Reasoning, and inference. Cambridge University Press, 2000.

[9] H.S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Froc. COLT, pages 287-
294,1992.

