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To control the walking gaits of a four-legged robot we present a novel 
neuromorphic VLSI chip that coordinates the relative phasing of the 
robot's legs similar to how spinal Central Pattern Generators are believed 
to control vertebrate locomotion [3]. The chip controls the leg move­
ments by driving motors with time varying voltages which are the out­
puts of a small network of coupled oscillators. The characteristics of the 
chip's output voltages depend on a set of input parameters. The rela­
tionship between input parameters and output voltages can be computed 
analytically for an idealized system. In practice, however, this ideal re­
lationship is only approximately true due to transistor mismatch and off­
sets. Fine tuning of the chip's input parameters is done automatically by 
the robotic system, using an unsupervised Support Vector (SV) learning 
algorithm introduced recently [7]. The learning requires only that the 
description of the desired output is given. The machine learns from (un­
labeled) examples how to set the parameters to the chip in order to obtain 
a desired motor behavior. 

1 Introduction 
Modem robots still lag far behind animals in their capability for legged locomotion. Four­
legged animals use distinct walking gaits [1], resulting for example in reduction of energy 
consumption at high speeds [5]. Similarly, the use of different gaits can allow legged robots 
to adjust their walking behavior not only for speed but also to the terrain they encounter. 
Coordinating the rhythmic movement patterns necessary for locomotion is a difficult task 
involving a large number of mechanical degrees of freedom (DOF) and input from many 
sensors, and considerable advantages may be gained by emulating control architectures 
found in animals. Neuroscientists have found increasingly strong evidence during the past 
century to support the hypothesis that centers in the nervous system, called Central Pattern 
Generators (CPGs), generate rhythmic output responsible for coordinating the large number 
of muscles needed for locomotion [2]. CPGs are influenced by signals from the brain stem 
and the cerebellum, brain structures in which locomotive adaptation is believed to take 
place [11]. This architecture greatly simplifies the control problem for the brain. The 
brain only needs to set the general level of activity, leaving it to the CPG to coordinate 
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Figure 1: A: Sketch of the control architecture of the robot. Thick arrows indicate the 
learning loop. B: Sketch of simplified control architecture for locomotion of vertebrates. 

the complex pattern of muscle activity required to generate locomotion [3]. We make 
use of these biological findings by implementing a similar control architecture to control a 
walking machine. A neuromorphic Gait Controller (GC) chip produces time varying output 
voltages that control the movement of the robot's legs. Their frequency, phase relationships 
and duty cycles determine the resulting walking behavior (step frequency, walking gait 
and direction of motion) and depend on a small set of control parameters. For an ideal 
system, the relationship between control parameters and output voltages can be determined 
analytically, but deviations of the chip from ideal have to be compensated for by other 
means. Since the goal here is that the resulting machine works autonomously, we propose 
a learning procedure to solve this problem. The robot is given the specifications of the 
desired movement sequence and explores parameter combinations in the input parameter 
space of its GC chip, keeping only those leading to a movement that is correct within some 
tolerance. It then locates the region in input parameter space that contains most of these 
parameter combinations using an algorithm [7] that extends SV learning to unlabelled data. 

2 The robotic system 
The robotic system consists of (i) a body with one degree of freedom per leg l and a po­
tentiometer attached to each motor that serves as a sensor providing information about the 
angular displacement of the leg, (ii) the neuromorphic Gait Controller (GC) chip and (iii) 
a PC on which algorithms are run to (a) acquire data from chip and sensors, (b) set the 
chip's input parameters and (c) implement the learning algorithm. The control architecture 
is inspired by the architecture which is used for locomotion in vertebrates (see Fig. 1 and 
Sec. 1). Like in biology, the existence of the GC chip considerably simplifies the control 
task. The computer only needs to set the input parameters to the GC chip, leaving the 
chip to coordinate the pattern of motor movements necessary to generate locomotion of the 
robot. The circuitry on the GC chip is based on an analysis [8] of circuits originating from 
M. W. Tilden (e.g. [4]). The GC chip contains five oscillators which can be inter-connected 
in different ways. The chip can be used in three reasonable configurations, one of which, 
a chain of four oscillators (Fig. 2), is used in the present work. Each oscillator (see Fig. 3) 
consists of two similar sub-circuits. In the following, subscripts i E {I, .. ,4} will denote 
the oscillator identity and subscripts k E {l, r} will denote one of the two sub-circuits 
within an oscillator. Here l stands for the left side of the oscillator circuit and r for the right 
side. Each sub-circuit has a capacitor connecting an input node to a node Vi,k, to which the 
input node of an inverter is connected. The output node of the inverter is called Vout,i,k. 

lThe robot's aluminum body is 12 cm long and 6.2 cm wide. It has four DC motors which drive 
aluminum legs attached at right angles to the plane of the body. Each leg ends in a foot that contains 
a small electromagnet which is activated during the stance phase of the leg and deactivated during 
the swing phase. Leg and foot together have a length of 6.5 cm. The robot walks on a metal floor so 
that the electromagnet increases the friction during the stance phase. For further details see [7]. 
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Figure 2: Sketch of the configuration in which the chip is used: a chain of four coupled 
oscillators. Each of the thin lines is connected to a pad. The round symbols stand for 
oscillators numbered corresponding to the text. The thick arrows stand for the transmission 
gates which couple the oscillators (see circuit diagram in Fig. 3). The arrows that lead to 
the four legs represent the outputs of the oscillators. 

Finally, a n-FET transistor with gate voltage Vb,i,k is connected between Vi,k and ground. 
An oscillator is obtained by connecting the input node of one sub-circuit to the output node 
of the other and vice versa. The output voltages of a single oscillator are two mirror-image 
step functions at Vout,i,l and Vout,i,r' These voltages control the stepping movements of 
one leg. Two oscillators, j and j + 1 (j E {I, '" 3}), are coupled with two transmission 
gates. One is connected between Vout,j,l and Vi+l,l. The current that flows through it de­
pends on the bias voltage Vi"j j+1,1' Likewise, the other transmission gate connects Vout,j,r 
and Vi+1,r and has the bias voltage Vb,j j+1,r' Note that the coupling is asymmetric, af­
fecting only oscillator j + 1. The voltages at the input nodes to the inverters of oscillator j 
are not affected by the coupling since the inverters act as impedance buffers. 
The chip's output is characterized by the frequency (common to all oscillators), the four 
duty cycles of the oscillators and three phase lags between oscillators. The phase lags 
determine which gait the robot adopts. The duty cycles of the oscillators set the ratio be­
tween stance and swing phase of the legs. Certain combinations of duty cycles differing 
from 50% make the robot turn [8]. For a set of constant input parameters, {Vb,i,r, Vb,i,l, 
Vb,j j+1,r, Vb,j j+l,l}, a rhythmic output is produced with oscillation period P, duty cycles 
Di and phase shifts ¢j, where i E {I, ",4} and j E {I, '" 3}. Analysis of the resulting cir­
cuit reveals [8] how the output characteristics of the chip depend on the input parameters. 
Assume that all transistors on the chip are identical and that the peak voltages at node V1,1 

and at node V1,r are identical and equal to Vmax . For a certain range of input parameters, 
the period of the oscillators is given by the period of the first oscillator in the chain (called 
the master oscillator) ..!L..!L 

P = C(Vmax - vth)( e - kTK.Vb,l ,1 + e - kTK.Vb,l,r)/ Ion (1) 

where C = 5.159 X 10-10 F is the capacitance and Ion is the drain source leakage current 
of the n-FET. The threshold voltage of the inverter, vth = 1. 345V, is calculated from 
the process parameters [9]. Vmax = 3.23V, Ion = 2.2095 X 10-16 A and K. = 0.6202 
are estimated with a least squares fit to the data (Fig. 4a). T is the temperature, k the 
Boltzmann constant and q the electron charge. Let the duty cycle be defined as the fraction 
of the period during which Vout,i,l is high. The master oscillator's duty cycle is 

D1 = 1/[1 + ePrK.(Vb,l,r - Vb,l ,I)] (2) 

A very simple requirement for the controller is to produce a symmetric waveform for 
straight forward locomotion. For this, all oscillators must have a duty cycle of 112 
(=50%) [8]. This can be implemented by a symmetric circuit (identical control volt­
ages on both right and left side: Vb,j j+1,1 = Vb ,j j+l,r =: Vb,j j+l Vj E {I, '" 3} and 
Vb,i,l = Vb,i,r =: Vb,i Vi E {I, ",4}). For simplicity, let Vb,i = Vb Vi. Then the phase lag 
between oscillators j and j + 1 is given by (compare Fig. 4b) 

1 kT /2q(Vmax - vth) ['Y(vth) - p,(vth)ePrK.(Vb,j j+1 + Vb)] 
¢j = - + ..!L ( ) In ..!L ( ) (3) 

2 /3e- kT K. Vb,jj+l+Vb -1 'Y(Vo)-p,(Vo)ekTK.Vb,jj+l+Vb 
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Figure 3: Two oscillators are coupled through a transmission gate. The gate voltage on the 
n-FET of each transmission gate is set to be the complementary voltage of the p-FET of 
the same transmission gate by the circuits which are drawn next to the transmission gates. 
These circuits are controlled by the bias voltages Vb,i HI,I and Vb,i i+1 ,r and copy the 
voltages Vb,j+1,1 and Vb,j+1 ,r, to nodes 2 and 4, respectively, while the voltages at nodes 
1 and 3 are (Vdd - Vb ,HI,I) and (Vdd - Vb,HI,r), respectively. The symbols on the right 
correspond to the symbols in Fig. 2. 

where Va = 0.1 V and 

(3 = lop ePr"-Vdd / Ion; ')'(V) = (Ion + lop ePr V) ePr"-Vdd; JL(V) = Ion ePr V 

3 Learning 
In theory, all duty cycles should be 112 for the symmetric circuit. In the real system, the 
duty cycle changes with the phase lag (see Fig. 4c) due to transistor mismatch. Thus, to 
obtain a duty cycle of 112, Vb ,i HI,1 might have to differfrom Vb,j HI,r . Parameter points 
which lead to both a desired phase lag and a duty cycle of 112 lie in a two dimensional 
space spanned by Vb,j HI,I and Vb,j j+1,r. These parameters are learned2. First, a subset 
X in this input parameter space is chosen according to the estimate given by (3). X is 
scanned and at each point, the output characteristics of the GC chip are determined. If they 
match the desired output characteristics (within specified tolerances), this point is added to 
the training data set V eX. After the scan is completed, the training data is transformed 
by a feature map <1> : X -+ F , into a feature space F such that if x, y EX, the dot 

2The desired duty cycle of 1/2 is an example, leading to forward locomotion for of the test robot. 
In the same way, any other value for the duty cycle can be learned (for examples see [8]) 
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Figure 4: (a): Oscillation period P (points = data, 3% error) as a function of the bias 
voltage Vb i 1 = Vb i r =: Vb. Vb i 1 = Vb i r implies that the duty cycle of the oscillation is 
112 (see (2». The ~s~iIIation peri~d follo~s (1) (solid line). (b): Phase lag between the first 
two oscillators in a chain of 4 oscillators. Function given in (3) (solid line) and data points. 
Vmax and Ion are as determined in (a), lop, as estimated by data fitting is 1.56 x 10-19 A. 
(c): Duty cycle of the second oscillator in a chain of 4 oscillators as a function of the phase 
lag between oscillators 1 and 2. 

product (<p(x) . <p(y)) can be computed by evaluation of the Gaussian kernel (which fulfills 
Mercer's condition [6]) 

k(x,y) = (<p(x)· <p(y)) = e-lIx-yIl2/2u2 (4) 

In feature space, a hyperplane (w . <p(x)) - p = 0 separating most of the data from the 
origin with large margin is found by solving the constrained optimization problem (see [7]) 

mill !llw l1 2 + tr L~=1 ei - P 
wEF,eEIRI,pEIR 

subject to (w· <p(v)) ~ p - ei, ei ~ 0 

(5) 

(6) 

A decision function, f, is computed, which is + 1 on a region in input space capturing most 
of the training data points and -1 elsewhere. The approximate geometrical center of this 
region is used as the input to the GC chip. The algorithmic implementation of the learning 
procedure uses the quadratic optimizer LOQO implementing a primal-dual interior-point 
method [10]. The parameter v upper bounds the fraction of outliers (see [7], Proposition 
4), which is related to the noise that the training data is subject to. In our experiments, 
v = 0.2 is chosen such that the algorithm disregards approximately as many points as can 
be expected to be falsely included in the training data given the noise of the data acquisition. 

4 Results 
As an example, the input parameters are learned for a forward walk, requiring phase shifts 
of qJt = rP2 = rP3 = 0.75 and duty cycles of Dl = D2 = D3 = D4 = 0.5. The oscillation 
period P = 0.89s and the duty cycle Dl = 0.5 are set according to (1) and (2). The 
value of P takes the mechanics of the robot into account [8]. The scanning step size is 
2mV and the tolerances are chosen to be ±0.015 for the phase lags and ±0.05 for the duty 
cycles. The parameters Vb,j Hl,l and Vb,j Hl,r are learned in sequence, first for j = 1 
(see Fig. 5). The result is applied to the GC chip. Then Vb ,23,l and Vb,23,r are learned and 
the result is also applied to the GC chip. Finally, Vb,34,l and Vb,34,r are learned. All input 
parameters of the GC chip are set to the learned values and the robot moves forward using a 
walk gait (see Fig. 6). The phase relationships of the robot's leg movements are measured. 
Simultaneously, the robot's trajectory is tracked using a video camera monitoring the robot 
from above, and two Light Emitting Diodes (LEDs) attached to the robot's front and rear. 
The robot has learned to move in the forward direction, using a walk gait, as desired, despite 
the inability to theoretically predict the exact values of the GC chip's bias voltages. 
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Figure 5: Result of learning values of the bias voltages Vb,12 ,1 and Vb,12,r which lead to 
qh = 0.75 and D2 = 0.5. Correctly classified (stars) and misclassified (crosses) training 
data (left) and test data (right). Outlined regions: learned by algorithm from training data. 
The training data is obtained from one scan of the displayed rectangular region X. The test 
data is a set of points obtained from three scans. 

5 Discussion 
We have introduced a novel neuromorphic chip for inter-leg coordination of a walking 
machine. This chip successfully controls a four-legged robot. A Support Vector algorithm 
enables tile robotic system to learn a desired movement sequence. We have demonstrated 
this here using the walk gait as an example. Other gaits have also been learned [8]. The 
architecture we used reduced the learning of a complex motor behavior to a classification 
task. The classifier we used requires only a few examples, making the learning efficient, 
and it can handle noisy data, making the learning robust. 
The chip need not be interfaced to a computer; it can control the robot without any need 
of software once the input parameters of the chip are known. Note, that the chips bias 
voltages can also be changed by simple sensors in a direct way, enabling the robot to adapt 
its behavior according to sensory information. This point is elaborated in [8]. 
However, the chip-computer interface creates a hybrid system in which the complex 
movement pattern required to make a four legged machine locomote is controlled by the 
chip, while algorithms run on the computer can focus on more demanding tasks. This 
architecture enables the robotic system to exploit the motor abilities it has due to the GC 
chip - independent of tile particular physical shape of the robot. 
The hybrid system could also be useful for the development of a second generation of neu­
romorphic motor control chips, able to solve more complex tasks. Furthermore, the control 
circuit could easily be extended to the control of six (or more) legs simply by addition of 
two (or more) oscillators, without increasing drastically in complexity, as the number of 
control parameters is small and scales linearly with the number of oscillators. Similarly, 
the circuit could be expanded to control n-jointed legs if each of the four oscillators 
becomes itself the master of a chain of n oscillators. Finally, the learning procedure intro­
duced here could be used as a general method for fine tuning of neuromorphic a VLSI chips. 
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Figure 6: Left: Control voltages (upper plot) and angular displacements of the legs as 
measured by potentiometers that are attached to the motors (lower plot) as a function of 
time shown for a cycle of the rhythmic movement. The four legs are distinguished by the 
abbreviations: left front (LF; dots), right front (RF; circles), left hind (LH; crosses) and 
right hind (RH; stars) . The legs move in succession with a phase shift of 90° : LF, RH, RF, 
and finally LH, a typical walk sequence [1]. Note that the data is acquired with a limited 
sampling rate. Thus the duty cycles of the control voltages appear to deviate from 50 %. 
However, the data on the right proves that the duty cycles are sufficiently close to 50 % to 
cause the robot to walk forward in a straight line, as desired. Right: Position of the robot's 
center of gravity as a function of time. Upper plot: x-coordinate, lower plot: y-coordinate. 
Errors are due mainly to the extension of the images of the LEDs in the image frames 
obtained from the CCD camera. The y-coordinate is constant within the error. This shows 
that the robot moves forward on a straight line. The robot moves at roughly 4.7 cm S-l . 
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