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Abstract 

We present a novel way of obtaining PAC-style bounds on the gen­
eralization error of learning algorithms, explicitly using their stabil­
ity properties. A stable learner is one for which the learned solution 
does not change much with small changes in the training set. The 
bounds we obtain do not depend on any measure of the complexity 
of the hypothesis space (e.g. VC dimension) but rather depend on 
how the learning algorithm searches this space, and can thus be 
applied even when the VC dimension is infinite. We demonstrate 
that regularization networks possess the required stability property 
and apply our method to obtain new bounds on their generalization 
performance. 

1 Introduction 

A key issue in computational learning theory is to bound the generalization error of 
learning algorithms. Until recently, most of the research in that area has focused on 
uniform a-priori bounds giving a guarantee that the difference between the training 
error and the test error is uniformly small for any hypothesis in a given class. 
These bounds are usually expressed in terms of combinatorial quantities such as VC­
dimension. In the last few years, researchers have tried to use more refined quantities 
to either estimate the complexity of the search space (e.g. covering numbers [1]) 
or to use a posteriori information about the solution found by the algorithm (e.g. 
margin [11]). There exist other approaches such as observed VC dimension [12], but 
all are concerned with structural properties of the learning systems. In this paper 
we present a novel way of obtaining PAC bounds for specific algorithms explicitly 
using their stability properties. The notion of stability, introduced by Devroye 
and Wagner [4] in the context of classification for the analysis of the Leave-one­
out error and further refined by Kearns and Ron [8] is used here in the context 
of regression in order to get bounds on the empirical error rather than the leave­
one-out error. This method has the nice advantage of providing bounds that do 
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not depend on any complexity measure of the search space (e.g. VC-dimension or 
covering numbers) but rather on the way the algorithm searches this space. In that 
respect, our approach can be related to Freund's [7] where the estimated size of the 
subset of the hypothesis space actually searched by the algorithm is used to bound 
its generalization error. However Freund's result depends on a complexity term 
which we do not have here since we are not looking separately at the hypotheses 
considered by the algorithm and their risk. 

The paper is structured as follows: next section introduces the notations and the 
definition of stability used throughout the paper. Section 3 presents our main result 
as a PAC-like theorem. In Section 4 we will prove that regularization networks are 
stable and apply the main result to obtain bounds on their generalization ability. 
A discussion of the results will be presented in Section 5. 

2 Notations and Definitions 

X and 'lJ being respectively an input and an output space, we consider a learning 
set S = {Zl = (Xl, yd, .. , Zm = (xm, Ym)} of size m in Z = X x 'lJ drawn i.i.d. from 
an unknown distribution D. A learning algorithm is a function L from zm into 
'lJx mapping a learning set S onto a function Is from X to 'lJ. To avoid complex 
notations, we consider only deterministic algorithms. It is also assumed that the 
algorithm A is symmetric with respect to S, i. e. for any permutation over the 
elements of S, Is yields the same result. Furthermore, we assume that all functions 
are measurable and all sets are countable which does not limit the interest of the 
results presented here. 

The empirical error of a function I measured on the training set Sis: 

1 m 
Rm(f) = - L c(f, Zi) 

m i=l 

c: 'lJx X X x 'lJ -t 1R+ being a cost function. The risk or generalization error can be 
written as: 

R(f) = Ez~D [c(f,z)] 

The study we describe here intends to bound the difference between empirical and 
generalization error for specific algorithms. More precisely, our goal is to bound for 
any E > 0, the term 

(1) 

Usually, learning algorithms cannot output just any function in 'lJx but rather pick 
a function Is in a set :r S;; 'lJX representing the structure or the architecture or the 
model. Classical VC theory deals with structural properties and aims at bounding 
the following quantity: 

PS~Dm [sup IRm(f) - R(f)1 > EJ 
fE'3' 

(2) 

This applies to any algorithm using :r as a hypothesis space and a bound on this 
quantity directly implies a similar bound on (1). However, classical bounds require 
the VC dimension of :r to be finite and do not use information about algorithmic 
properties. For a set :r, there exists many ways to search it which may yield different 
performance. For instance, multilayer perceptrons can be learned by a simple back­
propagation algorithm or combined with a weight decay procedure. The outcome 



of the algorithm belongs in both cases to the same set of functions, although their 
performance can be different. 

VC theory was initially motivated by empirical risk minimization (ERM) in which 
case the uniform bounds on the quantity (2) give tight error bounds. Intuitively, 
the empirical risk minimization principle relies on a uniform law of large numbers. 
Because it is not known in advance, what will be the minimum of the empirical 
risk, it is necessary to study the difference between empirical and generalization 
error for all possible functions in 9". If, now, we do not consider this minimum, but 
instead, we focus on the outcome of a learning algorithm A, we may then know a 
little bit more what kind of functions will be obtained. This limits the possibilities 
and restricts the supremum over all the functions in 9" to the possible outcomes of 
the algorithm. An algorithm which always outputs the null function does not need 
to be studied by a uniform law of large numbers. 

Let's introduce a notation for modified training sets: if S denotes the initial 
training set, S = {Zl, ... ,Zi-l,Zi,Zi+l, ... ,zm}, then Si denotes the training 
set after Zi has been replaced by a different training example z~, that is Si = 
{Zl, ... , Zi-l, z~, Zi+1, . .. , zm}. Now, we define a notion of stability for regression. 

Definition 1 (UniforIll stability) Let S = {Zl, ... ,zm} be a training set, Si = 
S\Zi be the training set where instance i has been removed and A a symmetric 
algorithm. We say that A is (3-stable if the following holds: 

'<IS E zm, '<Iz~,z E Z, Ic(fs,z) - c(fsi,z)l:::; {3 (3) 

This condition expresses that for any possible training set S and any replacement 
example z~, the difference in cost (measured on any instance in Z) incurred by the 
learning algorithm when training on S and on Si is smaller than some constant {3. 

3 Main result 

A stable algorithm, i. e. {3-stable with a small {3, has the property that replacing one 
element in its learning set does not change much its outcome. As a consequence, 
the empirical error, if thought as a random variable, should have a small variance. 
Stable algorithms can then be good candidates for their empirical error to be close 
to their generalization error. This assertion is formulated in the following theorem: 

Theorem 2 Let A be a (3-stable algorithm, such that ° :::; c(fs, Z) :::; M, for all 

Z E Z and all learning set S. For all E > 0, for any m ~ 8~C , we have: 

64Mm{3 + 8M2 

PS~D'" [lRm(fS) - R(fs) I > E] :::; 2 
mE 

(4) 

and for any m ~ 1, 

(5) 

Notice that this theorem gives tight bounds when the stability (3 is of the order 
of 11m. It will be proved in next section that regularization networks satisfy this 
requirement. 

In order to prove theorem 2, one has to study the random variable X = R(fs) -
Rm(fs), which can be done using two different approaches. The first one (corre­
sponding to the exponential inequality) uses a classical martingale inequality and is 



detailed below. The second one is a bit more technical and requires to use standard 
proof techniques such as symmetrization. Here we only briefly sketch this proof and 
refer the reader to [5] for more details. 

Proof of inequality (5) We use the following theorem: 

Theorem 3 {McDiarmid [9}}. Let Y1 , .. . , Yn be n i.i.d. random variables taking 
values in a set A, and assume that F : An -+ ~ satisfies for I ~ i ~ n: 

sup IF(Yl, ... ,Yn)-F(Yl, ... ,Yi-l,Y~,Yi+1, ... ,Yn)1 ~Ci 

then 

In order to apply theorem 3, we have to bound the expectation of X. We begin 
with a useful lemma: 

Lemma 1 For any symmetric learning algorithm we have for all I ~ i ~ m: 

ES~D~ [R(fs) - Rm(fs)] = ES,z:~D~+l [c(fs, Z~) - c(fs" zD] 

Proof: Notice that 
I m 

ES~D'" [Rm(fs)] = - 2:ES~D'" [c(fs,Zj)] = ES~D'" [c(fS,Zi)], 'Vi E {I, ... ,m} 
m j=l 

by symmetry and the i.i.d. assumption. Now, by simple renaming of Zi as z~ we get 

ES~D'" [Rm(fs)] = ES'~D'" [c(fs.,zDJ = ES,Z:~D~+l [c(fs.,zD] 
which, with the observation that 

ES~D~ [R(fs)] = ES,z:~D"'+l [c(fs, zD ] 
concludes the proof. 

Using the above lemma and the fact that A is ,B-stable, we easily get: 

ES~D'" [R(fs) - Rm(fs)] ~ ES,z:~D"'+l [,B] = ,B 

We now have to compute the constants Ci appearing in theorem 3. 

We have 

IR(fs) - R(fs·) I ~ Ez~D [Ic(fs, z) - c(fs.,z)l] ~,B 
and 

IRm(fs) - Rm(fsi)1 < ~ 2: Ic(fs,zj) - c(fsi,zj)1 + ~ IC(fS,Zi) - c(fs·,zDI 
m #i m 

< 2M +,B 
m 

Theorem 3 applied to R(fs) - Rm(fs) then gives inequality (5). 

Sketch of the proof of inequality (4) Recall Chebyshev's inequality: 

o 

E[X2] 
P(IXI ;:::: €) ~ -2-' (6) 

€ 

for any random variable X. In order to apply this inequality, we have to bound 
E[X2]. This can be done with a similar reasoning as for the expectation. Calcu­
lations are however more complex and we do not describe them here. For more 
details, see [5]. The result is the following: 

Eu[X2] ~ M2/m + 8M,B 
which with (6) gives inequality (4) and concludes the proof. 



4 Stability of Regularization Networks 

4.1 Definitions 

Regularization networks have been introduced in machine learning by Poggio and 
Girosi [10]. The relationship between these networks and the Support Vector Ma­
chines, as well as their Bayesian interpretation, make them very attractive. We 
consider a training set S = {(Xl, Yl), ... ,(xm, Ym)} with Xi E IRd and Yi E IR, that 
is we are in the regression setting. The regularization network technique consists 
in finding a function I : IRd -t IR in a space H which minimizes the following 
functional: 

(7) 

where II/II~ denotes the norm in the space H. In this framework, H is chosen to 
be a reproducing kernel Hilbert space (rkhs), which is basically a functional space 
endowed with a dot productl. A rkhs is defined by a kernel function, that is a 
symmetric function k : IRd X IRd -t IR which we will assume to be bounded by a 
constant K in what follows2 . In particular the following property will hold: 

(8) 

4.2 Stability study 

In this section, we show that regularization networks are, furthermore, stable as 
soon as A is not too small. 

Theorem 4 For regularization networks with IlkliH ~ K and (f(x) - y)2 ~ M, 

(
2K2 4K 2) In(2/6) 
A2 + A + m (9) 

and 

R(fs) ~ Rm(fs) + 2M ( 64K + 2) ...!... 
A m6 

(10) 

Proof: Let's denote by Is the minimizer of C. Let's define 

Let lSi be the minimizer of C i and let 9 denote the difference lSi - Is. By simple 
algebra, we have for t E [0,1] 

2t m 
C(fs) - C(fs + tg) = -- ~)Is(xj) - Yj)g(Xj) - 2tA < Is,g > +t2 A(g) 

m j=l 

lWe do not detail here the properties of such a space and refer the reader to [2, 3] for 
additional details. 
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where A(g) which is not explicitly written here is the factor of t2 . Similarly we have 

2t 
m l)fSi(Xj) -Yj)g(Xj) 

#i 

+ 2t (fsi (xD - YDg(xD + 2tA < fSi, 9 > +t2 Ai(g) 
m 

By optimality, we have 

C(fs) - C(fs + tg) :::; 0 and Ci(fsi) - Ci(fsi - tg) :::; 0 

thus, summing those inequalities, dividing by tim and making t -t 0, we get 

2 L g(Xj)2 - 2(fS(Xi) - Yi)g(Xi) + 2(fsi (xD - YDg(x~) + 2mAIIgilir :::; 0 
#i 

which gives 

mAllgllir :::; (fS(Xi) - Yi)g(Xi) - (fs(x~) - YDg(xD :::; 2VMI\;IIgliH 
using (8). We thus obtain 

Ilfsi - fsllH :::; 2VMI\;/(mA) 

and also 

Vx,y I (fs(x) - y)2 - (fsi(X) - y)21:::; 2VMlfs(x) - fSi(X)1 :::; 4MI\;/(mA) 

(11) 

We thus proved that the minimization of C[f] is a 4:;>.'" -stable procedure which 
allows to apply theorem 2. <>. 

4.3 Discussion 

These inequalities are both of interest since the range where they are tight is differ­
ent. Indeed, (10) has a poor dependence on c5 which makes it deteriorate when high 
confidence is sought for. However, (9) can give high confidence bounds but will be 
looser when A is small. 

Moreover, results exposed by Evgeniou et al. [6] indicate that the optimal depen­
dence of A with m is obtained for Am = 0 (In In m). If we plug this into the above 
bounds, we can notice that (9) does not converge as m -t 00. It may be conjectured 
that the poor estimation of the variance coming from the martingale method in Mc­
Diarmid's inequality is responsible for this effect, but a finer analysis is required to 
fully understand this phenomenon. 

One of the interests of these results is to provide a mean for choosing the A parameter 
by minimizing the right hand side of the inequality. Usually, it is determined with 
a validation set: some of the data is not used during learning and A is chosen such 
that the error of fs over the validation set is minimized. The drawback of this 
approach is to reduce the amount of data available for learning. 

5 Conclusion and future work 

We have presented a new approach to get bounds on the generalization performance 
of learning algorithms which makes use of specific properties of these algorithms. 
The bounds we obtain do not depend on the complexity of the hypothesis class but 
on a measure of how stable the algorithm's output is with respect to changes in the 
training set. 



Although this work has focused on regression, we believe that it can be extended 
to classification, in particular by making the stability requirement less demanding 
(e.g. stability in average instead of uniform stability). Future work will also aim 
at finding other algorithms that are stable or can be appropriately modified to ex­
hibit the stability property. At last, a promising application of this work could be 
the model selection problem where one has to tune parameters of the algorithms 
(e.g. A and parameters of the kernel for regularization networks). Instead of using 
cross-validation, one could measure how stability is influenced by the various pa­
rameters of interest and plug these measures into theorem 2 to derive bounds on 
the generalization error. 
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