
The Kernel Trick for Distances

Bernhard SchOikopf
Microsoft Research
1 Guildhall Street
Cambridge, UK

bs@kyb.tuebingen.mpg.de

Abstract

A method is described which, like the kernel trick in support vector ma­
chines (SVMs), lets us generalize distance-based algorithms to operate
in feature spaces, usually nonlinearly related to the input space. This
is done by identifying a class of kernels which can be represented as
norm-based distances in Hilbert spaces. It turns out that common kernel
algorithms, such as SVMs and kernel PCA, are actually really distance
based algorithms and can be run with that class of kernels, too.
As well as providing a useful new insight into how these algorithms
work, the present work can form the basis for conceiving new algorithms.

1 Introduction

One of the crucial ingredients of SVMs is the so-called kernel trick for the computation of
dot products in high-dimensional feature spaces using simple functions defined on pairs of
input patterns. This trick allows the formulation of nonlinear variants of any algorithm that
can be cast in terms of dot products, SVMs being but the most prominent example [13, 8].
Although the mathematical result underlying the kernel trick is almost a century old [6], it
was only much later [1, 3,13] that it was made fruitful for the machine learning community.
Kernel methods have since led to interesting generalizations of learning algorithms and to
successful real-world applications. The present paper attempts to extend the utility of the
kernel trick by looking at the problem of which kernels can be used to compute distances
in feature spaces. Again, the underlying mathematical results, mainly due to Schoenberg,
have been known for a while [7]; some of them have already attracted interest in the kernel
methods community in various contexts [11, 5, 15].

Let us consider training data (Xl, yd, ... , (xm, Ym) E X x y. Here, Y is the set of possible
outputs (e.g., in pattern recognition, {±1}), and X is some nonempty set (the domain) that
the patterns are taken from. We are interested in predicting the outputs y for previously
unseen patterns x. This is only possible if we have some measure that tells us how (x, y)
is related to the training examples. For many problems, the following approach works:
informally, we want similar inputs to lead to similar outputs. To formalize this, we have to
state what we mean by similar. On the outputs, similarity is usually measured in terms of
a loss function. For instance, in the case of pattern recognition, the situation is simple: two
outputs can either be identical or different. On the inputs, the notion of similarity is more
complex. It hinges on a representation of the patterns and a suitable similarity measure
operating on that representation.

One particularly simple yet surprisingly useful notion of (dis)similarity - the one we will
use in this paper - derives from embedding the data into a Euclidean space and utilizing
geometrical concepts. For instance, in SVMs, similarity is measured by dot products (i.e.
angles and lengths) in some high-dimensional feature space F . Formally, the patterns are
first mapped into Fusing ¢ : X -t F, x I-t ¢(x), and then compared using a dot product
(¢(x), ¢(X')). To avoid working in the potentially high-dimensional space F, one tries to
pick a feature space in which the dot product can be evaluated directly using a nonlinear
function in input space, i.e. by means of the kernel trick

k(x, x') = (¢(x), ¢(X')). (1)

Often, one simply chooses a kernel k with the property that there exists some ¢ such that
the above holds true, without necessarily worrying about the actual form of ¢ - already the
existence of the linear space F facilitates a number of algorithmic and theoretical issues. It
is well established that (1) works out for Mercer kernels [3, 13], or, equivalently, positive
definite kernels [2, 14]. Here and below, indices i and j by default run over 1, ... , m.

Definition 1 (Positive definite kernel) A symmetric function k : X x X -t IR which for
all mEN, Xi E X gives rise to a positive definite Gram matrix, i.e. for which for all
Ci E IR we have

""~. CicjKij ~ 0, where Kij := k(Xi, Xj), L...J l ,J=1

is called a positive definite (pd) kernel.

(2)

One particularly intuitive way to construct a feature map satisfying (1) for such a kernel k
proceeds, in a nutshell, as follows (for details, see [2]):

1. Define a feature map
¢ : X -t IRA:', X I-t k(., x).

Here, IRA:' denotes the space of functions mapping X into Ilt

2. Turn it into a linear space by forming linear combinations

m m'

i=1 j=1

(3)

(4)

3. Endow it with a dot product (1, g) := 2::1 2:;~1 ai/Jjk(xi,xj), and turn it into a
Hilbert space Hk by completing it in the corresponding norm.

Note that in particular, by definition ofthe dot product, (k(., x), k(., x')) = k(x, x'), hence,
in view of (3), we have k(x,x') = (¢(X),¢(X')), the kernel trick. This shows that pd
kernels can be thought of as (nonlinear) generalizations of one of the simplest similarity
measures, the canonical dot product (x, x') , x, x' E IRN. The question arises as to whether
there also exi st generalizations of the simplest dissimilarity measure, the di stance Ilx - x' 11 2 .

Clearly, the distance 11¢(x) - ¢(X') 112 in the feature space associated with a pd kernel k can
be computed using the kernel trick (1) as k(x, x) + k(X', x') - 2k(x, x') . Positive definite
kernels are, however, not the full story: there exists a larger class of kernels that can be
used as generalized distances, and the following section will describe why.

2 Kernels as Generalized Distance Measures

Let us start by considering how a dot product and the corresponding distance measure are
affected by a translation of the data, x I-t x - Xo. Clearly, Ilx - x' 11 2 is translation invariant

while (x, x') is not. A short calculation shows that the effect of the translation can be
expressed in terms of II. - .11 2 as

((x - xo), (x' - xo)) = ~ (-llx - x/11 2 + Ilx - xol12 + Ilxo - X'W) . (5)

Note that this is, just like (x,x /), still a pd kernel: ~i,j CiCj((Xi - xo), (Xj - xo)) =
II ~i Ci(Xi - xo)112 ~ O. For any choice of Xo E X, we thus get a similarity measure (5)
associated with the dissimilarity measure Ilx - x'II.
This naturally leads to the question whether (5) might suggest a connection that holds true
also in more general cases: what kind of nonlinear dissimilarity measure do we have to
substitute instead of II. - .11 2 on the right hand side of (5) to ensure that the left hand side
becomes positive definite? The answer is given by a known result. To state it, we first need
to define the appropriate class of kernels.

Definition 2 (Conditionally positive definite kernel) A symmetric function k : X x X -t
IR which satisfies (2) for all mEN, Xi E X and for all Ci E IR with

~~ Ci = 0, L... t=l

is called a conditionally positive definite (cpd) kernel.

(6)

Proposition 3 (Connection pd - cpd [2]) Let Xo E X, and let k be a symmetric kernel
on X x X. Then

k(x, x') := ~ (k(x, x') - k(x, xo) - k(xo, x') + k(xo, xo))

is positive definite if and only if k is conditionally positive definite.

The proof follows directly from the definitions and can be found in [2].

(7)

This result does generalize (5): the negative squared distance kernel is indeed cpd, for
~i Ci = 0 implies - ~i,j cicjllxi - xjl12 = - ~i Ci ~j Cj IIxjl12 - ~j Cj ~i cillxil12 +
2 ~i,j CiCj (Xi, Xj) = 2 ~i,j CiCj (Xi, Xj) = 211 ~i CiXi 112 ~ O. In fact, this implies that all
kernels of the form

k(x, x') = -llx - x/II/3, 0 < f3 ~ 2
are cpd (they are not pd), by application of the following result:

(8)

Proposition 4 ([2]) If k : X x X -t] - 00,0] is cpd, then so are - (_k)O< (0 < Q < 1)
and -log(l - k).

To state another class of cpd kernels that are not pd, note first that as trivial consequences
of Definition 2, we know that (i) sums of cpd kernels are cpd, and (ii) any constant b E IR
is cpd. Therefore, any kernel of the form k + b, where k is cpd and b E IR, is also cpd. In
particular, since pd kernels are cpd, we can take any pd kernel and offset it by b and it will
still be at least cpd. For further examples of cpd kernels, cf. [2, 14, 4, 11].

We now return to the main flow of the argume~t. Proposition 3 allows us to construc5
the feature map for k from that of the pd kernel k. To this end, fix Xo E X and define k
according to (7). Due to Proposition 3, k is positive definite. Therefore, we may employ the
Hilbert space representation ¢ : X -t H of k (ct. (1», satisfying (¢(x), ¢(X')) = k(x, x'),
hence

11¢(x) - ¢(x')112 = (¢(x) - ¢(X'), ¢(x) - ¢(X')) = k(x, x) + k(X', x') - 2k(x, x'). (9)

Substituting (7) yields

1
114>(x) - 4>(x')112 = -k(x, x') + 2 (k(x, x) + k(X', x')) . (10)

We thus have proven the following result.

Proposition 5 (Hilbert space representation of cpd kernels [7, 2]) Let k be a real­
valued conditionally positive definite kernel on X, satisfying k(x, x) = 0 for all x E X.
Then there exists a Hilbert space H of real-valued functions on X, and a mapping
4> : X -t H, such that

114>(x) - 4>(x')112 = -k(x, x').
lfwe drop the assumption k(x, x) = 0, the Hilbert .space representation reads

1 114>(x) - 4>(x')112 = -k(x, x') + 2 (k(x, x) + k(X', x')) .

(11)

(12)

It can be shown that if k(x, x) = 0 for all x E X, then d(x, x') := J -k(x, x') =
114>(x) - 4>(x')11 is a semi-metric; it is a metric if k(X,X') f:. 0 for x f:. x' [2].

We next show how to represent general symmetric kernels (thus in particular cpd kernels)
as symmetric bilinear forms Q in feature spaces. This generalization of the previously
known feature space representation for pd kernels comes at a cost: Q will no longer be
a dot product. For our purposes, we can get away with this. The result will give us an
intuitive understanding of Proposition 3: we can then write k as k(X,X') := Q(4)(x) -
4>(xo), 4>(x') - 4>(xo)). Proposition 3 thus essentially adds an origin in feature space which
corresponds to the image 4>(xo) of one point Xo under the feature map. For translation
invariant algorithms, we are always allowed to do this, and thus turn a cpd kernel into a pd
one - in this sense, cpd kernels are "as good as" pd kernels.

Proposition 6 (Vector space representation of symmetric kernels) Let k be a real­
valued symmetric kernel on X. Then there exists a linear .space H of real-valued functions
on X , endowed with a symmetric bilinear form Q(., .), and a mapping 4> : X -t H, such
that

k(x, x') = Q(4)(x), 4>(x')). (13)

Proof The proof is a direct modification of the pd case. We use the map (3) and linearly

complete the image as in (4). Define Q(f,g) := L:l LT~1 ad3j k(xi, xj). To see that it
is well-defined, although it explicitly contains the expansion coefficients (which need not

be unique), note that Q(f, g) = LT~1 /3jf(xj), independent of the ai. Similarly, for g,
note that Q(f, g) = Li aig(xi), hence it is independent of /3j. The last two equations also
show that Q is bilinear; clearly, it is symmetric. •

Note, moreover, that by definition of Q, k is a reproducing kernel for the feature space
(which is not a Hilbert space): for all functions f (4), we have Q(k(.,x),f) = f(x); in
particular, Q(k(., x), k(., x')) = k(x, x').

Rewriting k as k(x, x') := Q(4)(x) - 4>(xo), 4>(x') - 4>(xo)) suggests an immediate gen­
eralization of Proposition 3: in practice, we might want to choose other points as origins
in feature space - points that do not have a preimage Xo in input space, such as (usually)
the mean of a set of points (cf. [12]). This will be useful when considering kernel PCA.
Crucial is only that our reference point's behaviour under translations is identical to that
of individual points. This is taken care of by the constraint on the sum of the Ci in the
following proposition. The asterisk denotes the complex conjugated transpose.

Proposition 7 (Exercise 2.23, [2]) Let K be a symmetric matrix, e E ~m be the vector of
all ones, J the m x m identity matrix, and let c E em satisfy e*c = 1. Then

K := (J - ec*)K(J - ce*) (14)

is positive definite if and only if K is conditionally positive definite.

Proof

"~": suppose K is positive definite, i.e. for any a E em, we have

o ~ a* Ka = a* Ka + a*ec* Kce*a - a* Kce*a - a*ec* Ka. (15)

In the case a*e = e*a = 0 (cf. (6», the three last terms vanish, i.e. 0 ~ a* Ka, proving
that K is conditionally positive definite.

"¢=": suppose K is conditionally positive definite. The map (J - ce*) has its range in
the orthogonal complement of e, which can be seen by computing, for any a E em,

e*(J - ce*)a= e*a-e*ce*a = O. (16)

Moreover, being symmetric and satisfying (J - ce*)2 = (J - ce*), the map (J - ce*)
is a projection. Thus K is the restriction of K to the orthogonal complement of e, and
by definition of conditional positive definiteness, that is precisely the space where K is
positive definite.

•
This result directly implies a corresponding generalization of Proposition 3:

Proposition 8 (Adding a general origin) Let k be a symmetric kernel, Xl, ... ,Xm E X,
and let Ci E e satisfy E~l Ci = 1. Then

(17)

is positive definite if and only if k is conditionally positive definite.

Proof Consider a set of points x~, . . . , x~" m' E N, x~ EX, and let K be the
(m + m') x (m + m') Gram matrix based on Xl, .. . , X m , X~, ... , x~,. Apply Proposi­
tion 7 using cm +! = ... = cm +m ' = O. •

Example 9 (SVMs and kernel peA) (i) The above results show that conditionally posi­
tive definite kernels are a natural choice whenever we are dealing with a translation in­
variant problem, such as the SVM: maximization of the margin of separation between two
classes of data is independent of the origin '.I' position. Seen in this light, it is not surprising
that the structure of the dual optimization problem (cf [13}) allows cpd kernels: as noticed
in [11, 10}, the constraint E~l QiYi = 0 projects out the same sub.lpace as (6) in the
definition of conditionally positive definite kernels.

(ii) Another example of a kernel algorithm that works with conditionally positive definite
kernels is kernel peA [9}, where the data is centered, thus removing the dependence on the
origin infeature .Ipace. Formally, this follows from Proposition 7 for Ci = 11m.

Example 10 (Parzen windows) One of the simplest distance-based classification algo­
rithms conceivable proceeds as follows. Given m+ points labelled with + 1, m_ points
labelled with -1, and a test point ¢(x), we compute the mean squared distances between
the latter and the two classes, and assign it to the one where this mean is smaller,

We use the distance kernel trick (Proposition 5) to express the decision function as a kernel
expansion in input space: a short calculation shows that

y = sgn (_1_ L k(X,Xi) - _1_ L k(X,Xi) + c) ,
m+ Yi=l m_ Yi=-l

(19)

with the constant offset c = (1/2m_) L:Yi=-l k(Xi, Xi) - (1/2m+) L:Yi=l k(Xi, Xi). Note
thatfor some cpd kernels, such as (8), k(Xi, Xi) is always 0, thus c = O. For others, such as
the commonly used Gaussian kernel, k(Xi, Xi) is a nonzero constant, in which case c also
vanishes.

For normalized Gaussians and other kernels that are valid density models, the resulting
decision boundary can be interpreted as the Bayes decision based on two Parzen windows
density estimates of the classes; for general cpd kernels, the analogy is a mere formal one.

Example 11 (Toy experiment) In Fig. J, we illustrate the finding that kernel peA can be
carried out using cpd kernels. We use the kernel (8). Due to the centering that is built into
kernel peA (cf Example 9, (ii), and (5)), the case (3 = 2 actually is equivalent to linear
peA. As we decrease (3, we obtain increasingly nonlinear feature extractors.

Note, moreover, that as the kernel parameter (3 gets smaller, less weight is put on large
distances, and we get more localizedfeature extractors (in the sense that the regions where
they have large gradients, i.e. dense sets of contour lines in the plot, get more localized).

Figure 1: Kernel PCA on a toy dataset using the cpd kernel (8); contour plots of the feature
extractors corresponding to projections onto the first two principal axes in feature space.
From left to right: (3 = 2,1.5,1,0.5. Notice how smaller values of (3 make the feature
extractors increasingly nonlinear, which allows the identification of the cluster structure.

3 Conclusion

We have described a kernel trick for distances in feature spaces. It can be used to generalize
all distance based algorithms to a feature space setting by substituting a suitable kernel
function for the squared distance. The class of kernels that can be used is larger than
those commonly used in kernel methods (known as positive definite kernels) . We have
argued that this reflects the translation invariance of distance based algorithms, as opposed
to genuinely dot product based algorithms. SVMs and kernel PCA are translation invariant
in feature space, hence they are really both distance rather than dot product based. We
thus argued that they can both use conditionally positive definite kernels . In the case of
the SVM, this drops out of the optimization problem automatically [11], in the case of
kernel PCA, it corresponds to the introduction of a reference point in feature space. The
contribution of the present work is that it identifies translation invariance as the underlying
reason, thus enabling us to use cpd kernels in a much larger class of kernel algorithms, and
that it draws the learning community's attention to the kernel trick for distances.

Acknowledgments. Part of the work was done while the author was visiting the Aus­
tralian National University. Thanks to Nello Cristianini, Ralf Herbrich, Sebastian Mika,
Klaus Miiller, John Shawe-Taylor, Alex Smola, Mike Tipping, Chris Watkins, Bob
Williamson, Chris Williams and a conscientious anonymous reviewer for valuable input.

References

[1] M. A. Aizerman, E. M. Braverman, and L. 1. Rozonoer. Theoretical foundations of the potential
function method in pattern recognition learning. Autom. and Remote Contr. , 25:821- 837, 1964.

[2] C. Berg, J.P.R. Christensen, and P. Ressel. Hannonic Analysis on Semigroups. Springer-Verlag,
New York, 1984.

[3] B. E. Boser, 1. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classi­
fiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational
Learning Theory, pages 144-152, Pittsburgh, PA, July 1992. ACM Press.

[4] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures.
Neural Computation, 7(2):219- 269, 1995.

[5] D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-1O,
Computer Science Department, University of California at Santa Cruz, 1999.

[6] J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philos. Trans. Roy. Soc. London, A 209:415-446, 1909.

[7] I. J. Schoenberg. Metric spaces and positive definite functions. Trans. Amer. Math. Soc.,
44:522- 536, 1938.

[8] B. Sch61kopf, C. J. C. Burges, and A. J. Smola. Advances in Kernel Methods - Support Vector
Learning. MIT Press, Cambridge, MA, 1999.

[9] B. SchDlkopf, A. Smola, and K-R. Miiller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10:1299- 1319, 1998.

[10] A. Smola, T. FrieB, and B. ScMlkopf. Semiparametric support vector and linear programming
machines. In M.S. Keams, S.A. Solla, and D.A. Cohn, editors, Advances in Neural Infonnation
Processing Systems 11 , pages 585 - 591, Cambridge, MA, 1999. MIT Press.

[11] A. Smola, B. SchDlkopf, and K-R. Miiller. The connection between regularization operators
and support vector kernels. Neural Networks , 11:637- 649, 1998.

[12] W.S . Torgerson. Theory and Methods of Scaling. Wiley, New York, 1958.

[13] V. Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y., 1995.

[14] G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Confer­
ence Series in Applied Mathematics. SIAM, Philadelphia, 1990.

[15] C. Watkins, 2000. personal communication.

