
Hierarchical Memory-Based
Reinforcement Learning

Natalia Hernandez-Gardio}
Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA 02139

nhg@ai.mit.edu

Sridhar Mahadevan
Department of Computer Science

Michigan State University
East Lansing, MI 48824
mahadeva@cse.msu.edu

Abstract

A key challenge for reinforcement learning is scaling up to large
partially observable domains. In this paper, we show how a hier­
archy of behaviors can be used to create and select among variable
length short-term memories appropriate for a task. At higher lev­
els in the hierarchy, the agent abstracts over lower-level details
and looks back over a variable number of high-level decisions in
time. We formalize this idea in a framework called Hierarchical
Suffix Memory (HSM). HSM uses a memory-based SMDP learning
method to rapidly propagate delayed reward across long decision
sequences. We describe a detailed experimental study comparing
memory vs. hierarchy using the HSM framework on a realistic
corridor navigation task.

1 Introduction

Reinforcement learning encompasses a class of machine learning problems in which
an agent learns from experience as it interacts with its environment. One funda­
mental challenge faced by reinforcement learning agents in real-world problems is
that the state space can be very large, and consequently there may be a long delay
before reward is received. Previous work has addressed this issue by breaking down
a large task into a hierarchy of subtasks or abstract behaviors [1, 3, 5].

Another difficult issue is the problem of perceptual aliasing: different real-world
states can often generate the same observations. One strategy to deal with percep­
tual aliasing is to add memory about past percepts. Short-term memory consisting
of a linear (or tree-based) sequence of primitive actions and observations has been
shown to be a useful strategy [2]. However, considering short-term memory at a
flat, uniform resolution of primitive actions would likely scale poorly to tasks with
long decision sequences. Thus, just as spatio-temporal abstraction of the state
space improves scaling in completely observable environments, for large partially
observable environments a similar benefit may result if we consider the space of
past experience at variable resolution. Given a task, we want a hierarchical strategy
for rapidly bringing to bear past experience that is appropriate to the grain-size of
the decisions being considered.

comer T-junction dead end

Ii II
=::J C

II Ii II

o D3 _0 ..01 _ O D3 _ O D2 _ 0 D1 _ O D3 /
abstraction level: navigation -0- ' ", ">. * '---.... ~ Y

J- -
abstraction level: traversal

- - -o~~ocl! ... O~ ,
'---v--:J ~ * "

abstraction level: primitive
i . .

o .. 0 .. 0 ~ g .. 0 .. 0 ~ i
0 .. 0 .. 0 ~

Figure 1: This figure illustrates memory-based decision making at two levels in the
hierarchy of a navigation task. At each level, each decision point (shown with a
star) examines its past experience to find states with similar history (shown with
shadows). At the abstract (navigation) level, observations and decisions occur at
intersections. At the lower (corridor-traversal) level, observations and decisions
occur within the corridor.

In this paper, we show that considering past experience at a variable, task­
appropriate resolution can speed up learning and greatly improve performance un­
der perceptual aliasing. The resulting approach, which we call Hierarchical Suffix
Memory (HSM), is a general technique for solving large, perceptually aliased tasks.

2 Hierarchical Suffix Memory

By employing short-term memory over abstract decisions, each of which involves
a hierarchy of behaviors, we can apply memory at a more informative level of
abstraction. An important side-effect is that the agent can look at a decision point
many steps back in time while ignoring the exact sequence of low-level observations
and actions that transpired. Figure 1 illustrates the HSM framework.

The problem of learning under perceptual aliasing can be viewed as discovering an
informative sequence of past actions and observations (that is, a history suffix) for a
given world state that enables an agent to act optimally in the world. We can think
of each situation in which an agent must choose an action (a choice point) as being
labeled with a pair [0", l]: l refers to the abstraction level and 0" refers to the history
suffix. In the completely observable case, 0" has a length of one, and decisions are
made based on the current observation. In the partially observable case, we must
additionally consider past history when making decisions. In this case, the suffix 0",

is some sequence of past observations and actions that must be learned. This idea
of representing memory as a variable-length suffix derives from work on learning
approximations of probabilistic suffix automata [2, 4].

Here is the general HSM procedure (including model-free and model-based updates):

1. Given an abstraction levell and choice point s within l: for each potential
future decision, d, examine the history at level l to find a set of past choice
points that have executed d and whose incoming (suffix) history most closely
matches that of the current point. Call this set of instances the "voting
set" for decision d.

2. Choose dt as the decision with the highest average discounted sum of reward
over the voting set. Occasionally, choose dt using an exploration strategy.

Here, t is the event counter of the current choice point at level l.

3. Execute the decision dt and record: 0t, the resulting observation; Tt, the
reward received; and nt, the duration of abstract action dt (measured by
the number of primitive environment transitions executed by the abstract
action).
Note that for every environment transition from state Si-l to state Si with
reward Ti and discount I, we accumulate any reward and update the dis-
count factor: Tt ~ Tt + ItTi It ~ lIt

4. Update the Q-value for the current decision point and for each instance
in the voting set using the decision, reward, and duration values recorded
along with the instance.
Model-free: use an SMDP Q-Iearning update rule ((3 is the learning rate):

QI(St, dt) ~ (1- (3)QI(St, dt) + (3h + It max QI(St+n" d))
d

Model-based: if a state-transition model is being used, a sweep of value
iteration can be executed1 . Let the state corresponding to the decision
point at time t be represented by the suffix s:

QI(s,dt) ~ RI(S,dt) + 2:l1(SI I s,dt)"Vi(S')(,Ndt)

s'

where RI(S, dt) is the estimated immediate reward from executing decision
dt from the choice point [s, l]; FI(S' I s, dt) is the estimated probability
that the agent arrives in [s',l] given that it executed dt from [s,l]; Vt(S')
is the utility of the situation [S', l]; and Ndt is the average duration of the
transition [s,l] to [s',l] under abstract action dt.

HSM requires a technique for short-term memory. We implemented the Nearest
Sequence Memory (NSM) and Utile Suffix Memory (USM) algorithms proposed by
McCallum [2]. NSM records each of its raw experiences as a linear chain. To choose
the next action, the agent evaluates the outcomes of the k "nearest" neighbors in
the experience chain. NSM evaluates the closeness between two states according
to the match length of the suffix chain preceding the states. The chain can either
be grown indefinitely, or old experiences can be replaced after the chain reaches a
maximum length. With NSM, a model-free learning method, HSM uses an SMDP
Q-Iearning rule as described above. USM also records experience in a linear time
chain. However, instead of attempting to choose actions based on a greedy history
match, USM tries to explicitly determine how much memory is useful for predicting
reward. To do this, the agent builds a tree-like structure for state representation
online, selectively adding depth to the tree if the additional history distinction helps
to predict reward. With USM, which learns a model, HSM updates the Q-values
by doing one sweep of value iteration with the leaves of the tree as states.

Finally, to implement the hierarchy of behaviors, in principle any hierarchical re­
inforcement learning method may be used. For our implementation, we used the
Hierarchy of Abstract Machines (HAM) framework proposed by Parr and Russell
[3]. When executed, an abstract machine executes a partial policy and returns con­
trol to the caller upon termination. The HAM architecture uses a Q-Iearning rule
modified for SMDPs.

lIn this context , "state" is represented by the history suffix. That is, an instance is in
a "state" if the instance's incoming history matches the suffix representing the state. In
this case, the voting set is exactly the set of instances in the same state as the current
choice point 8t

Ihl'l-~ bJlJn~"': LL (-w"'r'lR4~.-O I~U;4, c:n , (Jl(..... 'JWM75, . 00002169l
itctuat PO,ltlon::·=·,·,-.,.,-::<lI"Y=-;).'.JO!'iSS=I •... <lT=(1(Q3
Encoder po"lt.lr~: :{ ="OOJo<;~"'5 Y=-l'."u oj l,7 5=,0';01'1 T=O(o'€
Co1'lp(lssl.,<,1,,,:>:r,:3::'
P, ·"" ;UUtl." ,, ... J;:: I (:
Unit~ : C(JOI"·d ulJt ,...'" 0.1 ' rie hl',,; iJ,. ,1 n" 0. 1 d~. ,·~~"

J

Shor1 SeilS Homad(l)

Figure 2: The corridor environment in the Nomad 200 robot simulator. The goal
is the 4-way junction. The robot is shown at the middle T-junction. The robot
is equipped with 16 short-range infrared and long-range sonar sensors. The other
figures in the environment are obstacles around which the robot must maneuver.

3 The Navigation Task

To test the HSM framework, we devised a navigation task in a simulated corridor
environment (see Figure 2). The task is for the robot to find its way from the start,
the center T-junction, to the goal, the four-way junction. The robot receives a
reward at the goal intersection and and a small negative reward for each primitive
step taken.

Our primary testbed was a simulated agent using a Nomad 200 robot simulator.
This simulated robot is equipped with 20 bumper and 16 sonar and infrared sensors,
arranged radially. The dynamics of the simulator are not "grid world" dynamics:
the Nomad 200 simulator represents continuous, noisy sensor input and the occa­
sional unreliability of actuators. The environment presents significant perceptual
ambiguity. Additionally, sensor readings can be noisy; even if the agent is at the
goal or an intersection, it might not "see" it. Note the size of the robot relative to
the environment in Figure 2.

What makes the task difficult are the several activities that must be executed con­
currently. Conceptually, there are two levels to our navigation problem. At the top,
most abstract, level is the root task of navigating to the goal. At the lower level
is the task of physically traversing the corridors, avoiding obstacles, maintaining
alignment with the walls, etc.

4 Implementation of the Learning Agents

In our experiments, we compared several learning agents: a basic HAM agent, four
agents using HSM (each using a different short-term memory technique), and a
"flat" NSM agent.

To build a set of behaviors for hallway navigation, we used a three-level hierarchy.
The top abstract level is basically a choice state for choosing a hallway navigation
direction (see Figure 3a). In each of the four nominal directions (front, back, left,
right), the agent can make one of three observations: wall, open, or unknown. The
agent must learn to choose among the four abstract machines to reach the next

go orwar

(a)

Figure 3: Hierarchical structure of behaviors for hallway navigation. Figure (a)
shows the most abstract level - responsible for navigating in the environment. Fig­
ures (b) and (c) show two implementations of the hall-traversal machines. The
machine in Figure (b) is reactive, and Figure (c) is a machine with a choice point.

intersection. This top level machine has control initially, and it regains control at
intersections. The second level of the hierarchy contains the machines for traversing
the hallway. The traversal behavior is shown in Figure 3b. Each of the four machines
at this level executes a reactive strategy for traversing a corridor. Finally, the
third level of the hierarchy implements the follow-wall and avoid-obstacle strategies
using primitive actions. Both the avoid-obstacle and the follow-wall strategies were
themselves trained previously using Q-Iearning to exploit the power of reuse in the
hierarchical framework.

The HAM agent uses a three-level behavior hierarchy as described above. There
is a single choice state, at the top level, and the agent learns to coordinate its
choices by keeping a table of Q-values. The Q-value table is indexed by the current
percepts and the chosen action (one of four abstract machines). The HAM agent
uses a discount of 0.9, and a learning rate of 0.1. Exploration is done with a simple
epsilon-greedy strategy.

The first pair of HSM agents use the same behavior hierarchy as the HAM agent.
However, they use short-term memory at the most abstract level to learn a strategy
for navigating the corridor. The first of these agents uses NSM at the top level with
a history length of 1000, k = 4, a discount of 0.9, and a learning rate of 0.1. The
second agent uses USM at the top level with a discount of 0.95. The performance
of these top-level memory agents was studied as a control against the more complex
multi-level memory agents described next.

The next pair of HSM agents use short-term memory both at the abstract navigation
level and at the intermediate level. The behavior decomposition at the abstract
navigation level is the same for the previous agents; however, the traversal behavior
is in turn composed of machines that must make a decision based on short-term
memory. Each of the machines at the traversal level uses short-term memory to
learn to coordinate a strategy behaviors for traversing a corridor. The memory­
based version of the traversal machine is shown in Figure 3c. The first of these
agents uses NSM as the short-term memory technique at both levels of the hierarchy.

It uses a history length of 1000, k = 4, a discount of 0.9, and a learning rate of
0.1. The second agent uses USM as the short-term memory technique at the top
level with a discount of 0.95. At the intermediate level, it uses NSM with the same
learning parameters as the preceding agent. Exploration is done with a simple
epsilon-greedy strategy in all cases.

Finally, we study the behavior of a "flat" NSM agent. The flat agent must keep track
of the following perceptual data: first, it needs the same perceptual information as
the top-level HAM (so it can identify the goal); second, it needs the additional
perceptual data for aligning to walls and for avoiding obstacles: whether it was
bumped, and the angle to the wall (binned into 4 groups of 45° each). The flat
agent chooses among four primitive actions: go-forward, veer-left, veer-right, and
back-up. Not only must it learn to make it to the goal, it must simultaneously learn
to align itself to walls and avoid obstacles. The NSM agent uses a history length of
1000 , k = 4, a discount of 0.9, and a learning rate of 0.1. Exploration is done with
a simple epsilon-greedy strategy.

5 Experimental Results

In Figure 4, we see the learning performance of each agent in the navigation task.
The graphs show the performance advantage of both multi-level HSM agents over
the other agents. In particular, we find that the flat memory-based agent does con­
siderably worse than the other three, as expected. The flat agent must carry around
the perceptual data to perform both high and low-level behaviors. From the point
of view of navigation, this results in long strings of uninformative corridor states
between the more informative intersection states. Since takes such an agent longer
to discover patterns in its experience, it never quite learns to navigate successfully
to the goal.

Next, both multi-level memory-based hierarchical agents outperform the HAM
agent. The HAM agent does better at navigation than the flat agent since it
abstracts away the perceptually aliased corridor states. However, it is unable to
distinguish between all of the intersections. Without the ability to tell which T­
junctions lead to the goal, and which to a dead end, the HAM agent does not
perform as well. The multi-level HSM agents also outperform the single-level ones.
The multi-level agents can tune their traversing strategy to the characteristics of
the cluttered hallway by using short-term memory at the intermediate level.

Finally, although it initially does worse, the multi-level HSM agent with USM soon
outperforms the multi-level HSM agent with NSM. This is because the USM al­
gorithm forces the agent to learn a state representation that uses only as much
incoming history as needed to predict reward. That is, it tries to learn the right
history suffix for each situation rather approximating the suffix by simply matching
greedily on incoming history. Learning such a representation takes some time, but,
once learned, produces better performance.

6 Conclusions and Future Work

In this paper we described a framework for solving large perceptually aliased tasks
called Hierarchical Suffix Memory (HSM). This approach uses a hierarchical behav­
ioral structure to index into past memory at multiple levels of resolution. Orga­
nizing past experience hierarchically scales better to problems with long decision
sequences. We presented an experiment comparing six different learning methods,
showing that hierarchical short-term memory produces overall the best performance

"-

as
~
~
(!)

B

~
f-
a
.ll
§
z

0.0012 multi-level memory (USM+HAM) -
multi-level memory (NSM+HAM)

0.001
no memory ~HAM ~
flat memory NSM ---

o.ooos

0.0006

0.0004

0.0002

-.------.~-'.------

10000 20000 30000 40000

Number of Pnmltlve Steps

0.0012

"-

as 0.001

~
~ o.ooos
(!)

B

~
0.0006

f-
a

0.0004 .ll
§
z 0.0002

0
0 10000

multi-leve l memory (USM+HAM) -
multi-leve l memory (NSM+HAM)

top-level only memory (USM+HAM)
top-level only memory (NSM+HAM) ----

..... ,.

20000 30000 40000

Number of Primitive Steps

Figure 4: Learning performance in the navigation task. Each curve is averaged over
eight trials for each agent.

in a perceptually aliased corridor navigation task.

One key limitation of the current HSM framework is that each abstraction level
examines only the history at its own level. Allowing interaction between the memory
streams at each level of the hierarchy would be beneficial. Consider a navigation
task in which the decision at a given intersection depends on an observation seen
while traversing the corridor. In this case, the abstract level should have the ability
to "zoom in" to inspect a particular low-level experience in greater detail. We
expect that pursuit of general frameworks such as HSM to manage past experience
at variable granularity will lead to strategies for control that are able to gracefully
scale to large, partially observable problems.

Acknowledgements

This research was carried out while the first author was at the Department of
Computer Science and Engineering, Michigan State University. This research is
supported in part by a KDI grant from the National Science Foundation ECS-
9873531.

References

[1] Thomas G. Dietterich. The MAXQ method for hierarchical reinforcement learning. In
Autonomous Robots Journal, Special Issue on Learning in Autonomous Robots, 1998.

[2] Andrew K. McCallum. Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, University of Rochester, 1995.

[3] Ron Parr. Hierarchical Control and Learning for Markov Decision Processes. PhD
thesis, University of California at Berkeley, 1998.

[4] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning proba­
bilistic automata with variable mem ory length. Machine Learning, 25:117- 149, 1996.

[5] R. Sutton, D. Precup, and S. Singh. Intra-option learning about temporally abstract
actions. In Proceedings of the 15th International Conference on Machine Learning,
pages 556- 564, 1998.

