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Abstract 

A key challenge for reinforcement learning is scaling up to large 
partially observable domains. In this paper, we show how a hier­
archy of behaviors can be used to create and select among variable 
length short-term memories appropriate for a task. At higher lev­
els in the hierarchy, the agent abstracts over lower-level details 
and looks back over a variable number of high-level decisions in 
time. We formalize this idea in a framework called Hierarchical 
Suffix Memory (HSM). HSM uses a memory-based SMDP learning 
method to rapidly propagate delayed reward across long decision 
sequences. We describe a detailed experimental study comparing 
memory vs. hierarchy using the HSM framework on a realistic 
corridor navigation task. 

1 Introduction 

Reinforcement learning encompasses a class of machine learning problems in which 
an agent learns from experience as it interacts with its environment. One funda­
mental challenge faced by reinforcement learning agents in real-world problems is 
that the state space can be very large, and consequently there may be a long delay 
before reward is received. Previous work has addressed this issue by breaking down 
a large task into a hierarchy of subtasks or abstract behaviors [1, 3, 5]. 

Another difficult issue is the problem of perceptual aliasing: different real-world 
states can often generate the same observations. One strategy to deal with percep­
tual aliasing is to add memory about past percepts. Short-term memory consisting 
of a linear (or tree-based) sequence of primitive actions and observations has been 
shown to be a useful strategy [2]. However, considering short-term memory at a 
flat, uniform resolution of primitive actions would likely scale poorly to tasks with 
long decision sequences. Thus, just as spatio-temporal abstraction of the state 
space improves scaling in completely observable environments, for large partially 
observable environments a similar benefit may result if we consider the space of 
past experience at variable resolution. Given a task, we want a hierarchical strategy 
for rapidly bringing to bear past experience that is appropriate to the grain-size of 
the decisions being considered. 
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Figure 1: This figure illustrates memory-based decision making at two levels in the 
hierarchy of a navigation task. At each level, each decision point (shown with a 
star) examines its past experience to find states with similar history (shown with 
shadows). At the abstract (navigation) level, observations and decisions occur at 
intersections. At the lower (corridor-traversal) level, observations and decisions 
occur within the corridor. 

In this paper, we show that considering past experience at a variable, task­
appropriate resolution can speed up learning and greatly improve performance un­
der perceptual aliasing. The resulting approach, which we call Hierarchical Suffix 
Memory (HSM), is a general technique for solving large, perceptually aliased tasks. 

2 Hierarchical Suffix Memory 

By employing short-term memory over abstract decisions, each of which involves 
a hierarchy of behaviors, we can apply memory at a more informative level of 
abstraction. An important side-effect is that the agent can look at a decision point 
many steps back in time while ignoring the exact sequence of low-level observations 
and actions that transpired. Figure 1 illustrates the HSM framework. 

The problem of learning under perceptual aliasing can be viewed as discovering an 
informative sequence of past actions and observations (that is, a history suffix) for a 
given world state that enables an agent to act optimally in the world. We can think 
of each situation in which an agent must choose an action (a choice point) as being 
labeled with a pair [0", l]: l refers to the abstraction level and 0" refers to the history 
suffix. In the completely observable case, 0" has a length of one, and decisions are 
made based on the current observation. In the partially observable case, we must 
additionally consider past history when making decisions. In this case, the suffix 0", 

is some sequence of past observations and actions that must be learned. This idea 
of representing memory as a variable-length suffix derives from work on learning 
approximations of probabilistic suffix automata [2, 4]. 

Here is the general HSM procedure (including model-free and model-based updates): 

1. Given an abstraction levell and choice point s within l: for each potential 
future decision, d, examine the history at level l to find a set of past choice 
points that have executed d and whose incoming (suffix) history most closely 
matches that of the current point. Call this set of instances the "voting 
set" for decision d. 

2. Choose dt as the decision with the highest average discounted sum of reward 
over the voting set. Occasionally, choose dt using an exploration strategy. 



Here, t is the event counter of the current choice point at level l. 

3. Execute the decision dt and record: 0t, the resulting observation; Tt, the 
reward received; and nt, the duration of abstract action dt (measured by 
the number of primitive environment transitions executed by the abstract 
action). 
Note that for every environment transition from state Si-l to state Si with 
reward Ti and discount I, we accumulate any reward and update the dis-
count factor: Tt ~ Tt + ItTi It ~ lIt 

4. Update the Q-value for the current decision point and for each instance 
in the voting set using the decision, reward, and duration values recorded 
along with the instance. 
Model-free: use an SMDP Q-Iearning update rule ((3 is the learning rate): 

QI(St, dt ) ~ (1- (3)QI(St, dt ) + (3h + It max QI(St+n" d)) 
d 

Model-based: if a state-transition model is being used, a sweep of value 
iteration can be executed1 . Let the state corresponding to the decision 
point at time t be represented by the suffix s: 

QI(s,dt ) ~ RI(S,dt ) + 2:l1(SI I s,dt)"Vi(S')(,Ndt ) 

s' 

where RI(S, dt ) is the estimated immediate reward from executing decision 
dt from the choice point [s, l]; FI(S' I s, dt ) is the estimated probability 
that the agent arrives in [s',l] given that it executed dt from [s,l]; Vt(S') 
is the utility of the situation [S', l]; and Ndt is the average duration of the 
transition [s,l] to [s',l] under abstract action dt. 

HSM requires a technique for short-term memory. We implemented the Nearest 
Sequence Memory (NSM) and Utile Suffix Memory (USM) algorithms proposed by 
McCallum [2]. NSM records each of its raw experiences as a linear chain. To choose 
the next action, the agent evaluates the outcomes of the k "nearest" neighbors in 
the experience chain. NSM evaluates the closeness between two states according 
to the match length of the suffix chain preceding the states. The chain can either 
be grown indefinitely, or old experiences can be replaced after the chain reaches a 
maximum length. With NSM, a model-free learning method, HSM uses an SMDP 
Q-Iearning rule as described above. USM also records experience in a linear time 
chain. However, instead of attempting to choose actions based on a greedy history 
match, USM tries to explicitly determine how much memory is useful for predicting 
reward. To do this, the agent builds a tree-like structure for state representation 
online, selectively adding depth to the tree if the additional history distinction helps 
to predict reward. With USM, which learns a model, HSM updates the Q-values 
by doing one sweep of value iteration with the leaves of the tree as states. 

Finally, to implement the hierarchy of behaviors, in principle any hierarchical re­
inforcement learning method may be used. For our implementation, we used the 
Hierarchy of Abstract Machines (HAM) framework proposed by Parr and Russell 
[3]. When executed, an abstract machine executes a partial policy and returns con­
trol to the caller upon termination. The HAM architecture uses a Q-Iearning rule 
modified for SMDPs. 

lIn this context , "state" is represented by the history suffix. That is, an instance is in 
a "state" if the instance's incoming history matches the suffix representing the state. In 
this case, the voting set is exactly the set of instances in the same state as the current 
choice point 8t 
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Figure 2: The corridor environment in the Nomad 200 robot simulator. The goal 
is the 4-way junction. The robot is shown at the middle T-junction. The robot 
is equipped with 16 short-range infrared and long-range sonar sensors. The other 
figures in the environment are obstacles around which the robot must maneuver. 

3 The Navigation Task 

To test the HSM framework, we devised a navigation task in a simulated corridor 
environment (see Figure 2). The task is for the robot to find its way from the start, 
the center T-junction, to the goal, the four-way junction. The robot receives a 
reward at the goal intersection and and a small negative reward for each primitive 
step taken. 

Our primary testbed was a simulated agent using a Nomad 200 robot simulator. 
This simulated robot is equipped with 20 bumper and 16 sonar and infrared sensors, 
arranged radially. The dynamics of the simulator are not "grid world" dynamics: 
the Nomad 200 simulator represents continuous, noisy sensor input and the occa­
sional unreliability of actuators. The environment presents significant perceptual 
ambiguity. Additionally, sensor readings can be noisy; even if the agent is at the 
goal or an intersection, it might not "see" it. Note the size of the robot relative to 
the environment in Figure 2. 

What makes the task difficult are the several activities that must be executed con­
currently. Conceptually, there are two levels to our navigation problem. At the top, 
most abstract, level is the root task of navigating to the goal. At the lower level 
is the task of physically traversing the corridors, avoiding obstacles, maintaining 
alignment with the walls, etc. 

4 Implementation of the Learning Agents 

In our experiments, we compared several learning agents: a basic HAM agent, four 
agents using HSM (each using a different short-term memory technique), and a 
"flat" NSM agent. 

To build a set of behaviors for hallway navigation, we used a three-level hierarchy. 
The top abstract level is basically a choice state for choosing a hallway navigation 
direction (see Figure 3a). In each of the four nominal directions (front, back, left, 
right), the agent can make one of three observations: wall, open, or unknown. The 
agent must learn to choose among the four abstract machines to reach the next 
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Figure 3: Hierarchical structure of behaviors for hallway navigation. Figure (a) 
shows the most abstract level - responsible for navigating in the environment. Fig­
ures (b) and (c) show two implementations of the hall-traversal machines. The 
machine in Figure (b) is reactive, and Figure (c) is a machine with a choice point. 

intersection. This top level machine has control initially, and it regains control at 
intersections. The second level of the hierarchy contains the machines for traversing 
the hallway. The traversal behavior is shown in Figure 3b. Each of the four machines 
at this level executes a reactive strategy for traversing a corridor. Finally, the 
third level of the hierarchy implements the follow-wall and avoid-obstacle strategies 
using primitive actions. Both the avoid-obstacle and the follow-wall strategies were 
themselves trained previously using Q-Iearning to exploit the power of reuse in the 
hierarchical framework. 

The HAM agent uses a three-level behavior hierarchy as described above. There 
is a single choice state, at the top level, and the agent learns to coordinate its 
choices by keeping a table of Q-values. The Q-value table is indexed by the current 
percepts and the chosen action (one of four abstract machines). The HAM agent 
uses a discount of 0.9, and a learning rate of 0.1. Exploration is done with a simple 
epsilon-greedy strategy. 

The first pair of HSM agents use the same behavior hierarchy as the HAM agent. 
However, they use short-term memory at the most abstract level to learn a strategy 
for navigating the corridor. The first of these agents uses NSM at the top level with 
a history length of 1000, k = 4, a discount of 0.9, and a learning rate of 0.1. The 
second agent uses USM at the top level with a discount of 0.95. The performance 
of these top-level memory agents was studied as a control against the more complex 
multi-level memory agents described next. 

The next pair of HSM agents use short-term memory both at the abstract navigation 
level and at the intermediate level. The behavior decomposition at the abstract 
navigation level is the same for the previous agents; however, the traversal behavior 
is in turn composed of machines that must make a decision based on short-term 
memory. Each of the machines at the traversal level uses short-term memory to 
learn to coordinate a strategy behaviors for traversing a corridor. The memory­
based version of the traversal machine is shown in Figure 3c. The first of these 
agents uses NSM as the short-term memory technique at both levels of the hierarchy. 



It uses a history length of 1000, k = 4, a discount of 0.9, and a learning rate of 
0.1. The second agent uses USM as the short-term memory technique at the top 
level with a discount of 0.95. At the intermediate level, it uses NSM with the same 
learning parameters as the preceding agent. Exploration is done with a simple 
epsilon-greedy strategy in all cases. 

Finally, we study the behavior of a "flat" NSM agent. The flat agent must keep track 
of the following perceptual data: first, it needs the same perceptual information as 
the top-level HAM (so it can identify the goal); second, it needs the additional 
perceptual data for aligning to walls and for avoiding obstacles: whether it was 
bumped, and the angle to the wall (binned into 4 groups of 45° each). The flat 
agent chooses among four primitive actions: go-forward, veer-left, veer-right, and 
back-up. Not only must it learn to make it to the goal, it must simultaneously learn 
to align itself to walls and avoid obstacles. The NSM agent uses a history length of 
1000 , k = 4, a discount of 0.9, and a learning rate of 0.1. Exploration is done with 
a simple epsilon-greedy strategy. 

5 Experimental Results 

In Figure 4, we see the learning performance of each agent in the navigation task. 
The graphs show the performance advantage of both multi-level HSM agents over 
the other agents. In particular, we find that the flat memory-based agent does con­
siderably worse than the other three, as expected. The flat agent must carry around 
the perceptual data to perform both high and low-level behaviors. From the point 
of view of navigation, this results in long strings of uninformative corridor states 
between the more informative intersection states. Since takes such an agent longer 
to discover patterns in its experience, it never quite learns to navigate successfully 
to the goal. 

Next, both multi-level memory-based hierarchical agents outperform the HAM 
agent. The HAM agent does better at navigation than the flat agent since it 
abstracts away the perceptually aliased corridor states. However, it is unable to 
distinguish between all of the intersections. Without the ability to tell which T­
junctions lead to the goal, and which to a dead end, the HAM agent does not 
perform as well. The multi-level HSM agents also outperform the single-level ones. 
The multi-level agents can tune their traversing strategy to the characteristics of 
the cluttered hallway by using short-term memory at the intermediate level. 

Finally, although it initially does worse, the multi-level HSM agent with USM soon 
outperforms the multi-level HSM agent with NSM. This is because the USM al­
gorithm forces the agent to learn a state representation that uses only as much 
incoming history as needed to predict reward. That is, it tries to learn the right 
history suffix for each situation rather approximating the suffix by simply matching 
greedily on incoming history. Learning such a representation takes some time, but, 
once learned, produces better performance. 

6 Conclusions and Future Work 

In this paper we described a framework for solving large perceptually aliased tasks 
called Hierarchical Suffix Memory (HSM). This approach uses a hierarchical behav­
ioral structure to index into past memory at multiple levels of resolution. Orga­
nizing past experience hierarchically scales better to problems with long decision 
sequences. We presented an experiment comparing six different learning methods, 
showing that hierarchical short-term memory produces overall the best performance 
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Figure 4: Learning performance in the navigation task. Each curve is averaged over 
eight trials for each agent. 

in a perceptually aliased corridor navigation task. 

One key limitation of the current HSM framework is that each abstraction level 
examines only the history at its own level. Allowing interaction between the memory 
streams at each level of the hierarchy would be beneficial. Consider a navigation 
task in which the decision at a given intersection depends on an observation seen 
while traversing the corridor. In this case, the abstract level should have the ability 
to "zoom in" to inspect a particular low-level experience in greater detail. We 
expect that pursuit of general frameworks such as HSM to manage past experience 
at variable granularity will lead to strategies for control that are able to gracefully 
scale to large, partially observable problems. 
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