
Feature Selection for SVMs 

J. Weston t, S. Mukherjee tt , O. Chapelle*, M. Pontiltt 
T. Poggiott, V. Vapnik*,ttt 

t Barnhill Biolnformatics.com, Savannah, Georgia, USA. 
tt CBCL MIT, Cambridge, Massachusetts, USA. 
* AT&T Research Laboratories, Red Bank, USA. 

ttt Royal Holloway, University of London, Egham, Surrey, UK. 

Abstract 

We introduce a method of feature selection for Support Vector Machines. 
The method is based upon finding those features which minimize bounds 
on the leave-one-out error. This search can be efficiently performed via 
gradient descent. The resulting algorithms are shown to be superior to 
some standard feature selection algorithms on both toy data and real-life 
problems of face recognition, pedestrian detection and analyzing DNA 
micro array data. 

1 Introduction 

In many supervised learning problems feature selection is important for a variety of rea­
sons: generalization performance, running time requirements, and constraints and interpre­
tational issues imposed by the problem itself. 

In classification problems we are given f data points Xi E ~n labeled Y E ±1 drawn i.i.d 
from a probability distribution P(x, y). We would like to select a subset of features while 
preserving or improving the discriminative ability of a classifier. As a brute force search 
of all possible features is a combinatorial problem one needs to take into account both the 
quality of solution and the computational expense of any given algorithm. 

Support vector machines (SVMs) have been extensively used as a classification tool with a 
great deal of success from object recognition [5, 11] to classification of cancer morpholo­
gies [10] and a variety of other areas, see e.g [13] . In this article we introduce feature se­
lection algorithms for SVMs. The methods are based on minimizing generalization bounds 
via gradient descent and are feasible to compute. This allows several new possibilities: 
one can speed up time critical applications (e.g object recognition) and one can perform 
feature discovery (e.g cancer diagnosis). We also show how SVMs can perform badly in 
the situation of many irrelevant features, a problem which is remedied by using our feature 
selection approach. 

The article is organized as follows. In section 2 we describe the feature selection problem, 
in section 3 we review SVMs and some of their generalization bounds and in section 4 we 
introduce the new SVM feature selection method. Section 5 then describes results on toy 
and real life data indicating the usefulness of our approach. 



2 The Feature Selection problem 

The feature selection problem can be addressed in the following two ways: (1) given a 
fixed m « n , find the m features that give the smallest expected generalization error; or 
(2) given a maximum allowable generalization error "(, find the smallest m. In both of 
these problems the expected generalization error is of course unknown, and thus must be 
estimated. In this article we will consider problem (1). Note that choices of m in problem 
(1) can usually can be reparameterized as choices of"( in problem (2). 

Problem (1) is formulated as follows. Given a fixed set of functions y = f(x, a) we wish 
to find a preprocessing of the data x r-t (x * 0'), 0' E {a, I} n, and the parameters a of the 
function f that give the minimum value of 

T(O', a) = f V(y,f((x*O'),a))dP(x,y) (1) 

subject to 110'110 = m, where P(x,y) is unknown, x * 0' = (Xl 0'1 , ... ,xnO'n) denotes an 
elementwise product, V (', .) is a loss functional and II . 110 is the a-norm. 

In the literature one distinguishes between two types of method to solve this problem: the 
so-called filter and wrapper methods [2]. Filter methods are defined as a preprocessing step 
to induction that can remove irrelevant attributes before induction occurs, and thus wish to 
be valid for any set of functions f(x, a). For example one popular filter method is to use 
Pearson correlation coefficients. 

The wrapper method, on the other hand, is defined as a search through the space of feature 
subsets using the estimated accuracy from an induction algorithm as a measure of goodness 
of a particular feature subset. Thus, one approximates T(O', a) by minimizing 

Twrap(O', a) = min Talg(O') 
IT 

(2) 

subject to 0' E {a, l}n where Talg is a learning algorithm trained on data preprocessed with 
fixed 0'. Wrapper methods can provide more accurate solutions than filter methods [9] , 
but in general are more computationally expensive since the induction algorithm Talg must 
be evaluated over each feature set (vector 0') considered, typically using performance on a 
hold out set as a measure of goodness of fit. 

In this article we introduce a feature selection algorithm for SVMs that takes advantage 
of the performance increase of wrapper methods whilst avoiding their computational com­
plexity. Note, some previous work on feature selection for SVMs does exist, however 
results have been limited to linear kernels [3, 7] or linear probabilistic models [8]. Our 
approach can be applied to nonlinear problems. In order to describe this algorithm, we first 
review the SVM method and some of its properties. 

3 Support Vector Learning 

Support Vector Machines [13] realize the following idea: they map x E IRn into a high 
(possibly infinite) dimensional space and construct an optimal hyperplane in this space. 
Different mappings x r-t ~(x) E 1l construct different SVMs. 

The mapping ~ (.) is performed by a kernel function K (', .) which defines an inner product 
in 1l. The decision function given by an SVM is thus: 

f(x) = w . ~(x) + b = L a?YiK(xi, x) + b. (3) 

The optimal hyperplane is the one with the maximal distance (in 1l space) to the closest im­
age ~(Xi) from the training data (called the maximal margin). This reduces to maximizing 



the following optimization problem: 

l 1 l 

W 2 (0:) = LO:i - 2 L O:iO:jYiyjK(Xi,Xj) 

i=1 i ,j=1 

(4) 

under constraints 2:;=1 O:iYi = ° and O:i 2:: 0, i = 1, ... , £. For the non-separable case 
one can quadratically penalize errors with the modified kernel K +- K + t I where I is 
the identity matrix and A a constant penalizing the training errors (see [4] for reasons for 
this choice). 

Suppose that the size of the maximal margin is M and the images <I>(Xl), ... , <I>(Xl) of the 
training vectors are within a sphere of radius R. Then the following holds true [13]. 

Theorem 1 lfimages of training data of size £ belonging to a .Iphere of size R are separa­
ble with the corresponding margin M, then the expectation of the error probability has the 
bound 

1 {R2} 1 { 2 2 O} EPerr ~ £E M2 = £E R W (0:) , (5) 

where expectation is taken over sets of training data of size £. 

This theorem justifies the idea that the performance depends on the ratio E{ R2 / M2} and 
not simply on the large margin M, where R is controlled by the mapping function <1>(.). 

Other bounds also exist, in particular Vapnik and Chapelle [4] derived an estimate using 
the concept of the span of support vectors. 

Theorem 2 Under the assumption that the set of support vectors does not change when 
removing the example p 

Epl - 1 < !E ~ \II ( o:~ -1) 
err - £ ~ (K- 1 ) 

p=1 sv pp 

(6) 

where \II is the step function , Ksv is the matrix of dot products between support vectors, 
p~;:-; is the probability of test error for the machine trained on a sample of size £ - 1 and 
the expectations are taken over the random choice of the sample. 

4 Feature Selection for SVMs 

In the problem of feature selection we wish to minimize equation (1) over u and 0: . The 
support vector method attempts to find the function from the set f(x, w, b) = w . <I> (x) + b 
that minimizes generalization error. We first enlarge the set of functions considered by the 
algorithm to f(x, w, b, u) = w . <I>(x * u) + b. Note that the mapping <l>u(x) = <I> (x * u) 
can be represented by choosing the kernel function Ku in equations (3) and (4): 

Ku(x, y) = K((x * u), (y * u)) = (<I>u(x) . <l>u(y)) (7) 

for any K . Thus for these kernels the bounds in Theorems (1) and (2) still hold. Hence, to 
minimize T(U, 0:) over 0: and u we minimize the wrapper functional Twrap in equation (2) 
where Talg is given by the equations (5) or (6) choosing a fixed value of u implemented by 
the kernel (7) . Using equation (5) one minimizes over u: 

R2W2(U) = R2(U)W2(o:O, u) (8) 

where the radius R for kernel Ku can be computed by maximizing (see, e.g [13]): 

(9) 



subject to L:i f3i = 1, f3i ~ 0, i = 1, ... , f, and W2(aO, 0") is defined by the maximum 
of functional (4) using kernel (7). In a similar way, one can minimize the .span bound over 
0" instead of equation (8). 

Finding the minimum of R 2W 2 over 0" requires searching over all possible subsets of n 
features which is a combinatorial problem. To avoid this problem classical methods of 
search include greedily adding or removing features (forward or backward selection) and 
hill climbing. All of these methods are expensive to compute if n is large. 

As an alternative to these approaches we suggest the following method: approximate the 
binary valued vector 0" E {O, 1}n, with a real valued vector 0" E ]Rn . Then, to find the 
optimum value of 0" one can minimize R 2W 2 , or some other differentiable criterion, by 
gradient descent. As explained in [4] the derivative of our criterion is: 

aR2W2(0") R2( )aW2(aO,0") W2( 0 )aR2(0") 
= 0" a + a ,fI a 

aO"k O"k O"k 
(10) 

aR2(0") 
(11) 

(12) 

We estimate the minimum of 7(0", a) by minimizing equation (8) in the space 0" E ]Rn 

using the gradients (10) with the following extra constraint which approximates integer 
programming: 

(13) 

subject to L:i O"i = m, O"i ~ 0, i = 1, ... ,f. 

For large enough), as p -+ ° only m elements of 0" will be nonzero, approximating opti­
mization problem 7(0", a). One can further simplify computations by considering a step­
wise approximation procedure to find m features. To do this one can minimize R 2W 2 (0") 
with 0" unconstrained. One then sets the q « n smallest values of 0" to zero, and repeats 
the minimization until only m nonzero elements of 0" remain. This can mean repeatedly 
training a SVM just a few times, which can be fast. 

5 Experiments 

5.1 Toy data 

We compared standard SVMs, our feature selection algorithms and three classical filter 
methods to select features followed by SVM training. The three filter methods chose the m 
largest features according to: Pearson correlation coefficients, the Fisher criterion score1, 

and the Kolmogorov-Smirnov test2). The Pearson coefficients and Fisher criterion cannot 
model nonlinear dependencies. 

In the two following artificial datasets our objective was to assess the ability of the algo­
rithm to select a small number of target features in the presence of irrelevant and redundant 
features. 

1 F( r) = 1 i, -1£; 21 , where 1-'; is the mean value for the r-th feature in the positive and negative 
U r +Ur 

classes and 0"; 2 is the standard deviation 

2KStst(r) = Vl sup (P{X :::; fr} - PiX :::; fr, Yr = I}) where fr denotes the r-th feature 

from each training example, and P is the corresponding empirical distribution. 



Linear problem Six dimensions of 202 were relevant. The probability of y = 1 or -1 was 
equal. The first three features {Xl,X2,X3} were drawn as Xi = yN(i,l) and the second 
three features {X4, X5, X6} were drawn as Xi = N(O, 1) with a probability of 0.7, otherwise 
the first three were drawn as Xi = N(O, 1) and the second three as Xi = yN(i - 3, 1). The 
remaining features are noise Xi = N(O, 20), i = 7, ... ,202. 

Nonlinear problem Two dimensions of 52 were relevant. The probability of y = 1 or -1 
was equal. The data are drawn from the following: if y = -1 then {Xl, X2} are drawn 
from N(JLl, 1;) or N(JL2, 1;) with equal probability, JLl = {-£, -3} and JL2 = ii, 3} and 
1; = I , if Y = 1 then {Xl, xd are drawn again from two normal distributions with equal 
probability, with JLl = {3, -3} and JL2 = {-3, 3} and the same 1; as before. The rest of 
the features are noise Xi = N(O, 20), i = 3, .. . ,52. 

In the linear problem the first six features have redundancy and the rest of the features are 
irrelevant. In the nonlinear problem all but the first two features are irrelevant. 

We used a linear SVM for the linear problem and a second order polynomial kernel for the 
nonlinear problem. For the filter methods and the SVM with feature selection we selected 
the 2 best features. 

The results are shown in Figure (1) for various training set sizes, taking the average test 
error on 500 samples over 30 runs of each training set size. The Fisher score (not shown in 
graphs due to space constraints) performed almost identically to correlation coefficients. 

In both problems standard SVMs perform poorly: in the linear example using £ = 500 
points one obtains a test error of 13% for SVMs, which should be compared to a test error of 
3% with £ = 50 using our methods. Our SVM feature selection methods also outperformed 
the filter methods, with forward selection being marginally better than gradient descent. 
In the nonlinear problem, among the filter methods only the Kolmogorov-Smirnov test 
improved performance over standard SVMs. 
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Figure 1: A comparison of feature selection methods on (a) a linear problem and (b) a 
nonlinear problem both with many irrelevant features. The x-axis is the number of training 
points, and the y-axis the test error as a fraction of test points. 

5.2 Real-life data 

For the following problems we compared minimizing R2W 2 via gradient descent to the 
Fisher criterion score. 

Face detection The face detection experiments described in this section are for the system 
introduced in [12, 5]. The training set consisted of 2, 429 positive images offrontal faces of 



size 19x 19 and 13,229 negative images not containing faces. The test set consisted of 105 
positive images and 2, 000, 000 negative images. A wavelet representation of these images 
[5] was used, which resulted in 1,740 coefficients for each image. 

Performance of the system using all coefficients, 725 coefficients, and 120 coefficients is 
shown in the ROC curve in figure (2a). The best results were achieved using all features, 
however R2W 2 outperfomed the Fisher score. In this case feature selection was not useful 
for eliminating irrelevant features, but one could obtain a solution with comparable perfor­
mance but reduced complexity, which could be important for time critical applications. 

Pedestrian detection The pedestrian detection experiments described in this section are 
for the system introduced in [11]. The training set consisted of 924 positive images of 
people of size 128x64 and 10, 044 negative images not containing pedestrians. The test set 
consisted of 124 positive images and 800, 000 negative images. A wavelet representation 
of these images [5, 11] was used, which resulted in 1,326 coefficients for each image. 

Performance of the system using all coefficients and 120 coefficients is shown in the ROC 
curve in figure (2b). The results showed the same trends that were observed in the face 
recognition problem. 
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Figure 2: The solid line is using all features, the solid line with a circle is our feature 
selection method (minimizing R2W 2 by gradient descent) and the dotted line is the Fisher 
score. (a)The top ROC curves are for 725 features and the bottom one 
for 120 features for face detection. (b) ROC curves using all features and 120 features for 
pedestrian detection. 

Cancer morphology classification For DNA micro array data analysis one needs to deter­
mine the relevant genes in discrimination as well as discriminate accurately. We look at 
two leukemia discrimination problems [6, 10] and a colon cancer problem [1] (see also [7] 
for a treatment of both of these problems). 

The first problem was classifying myeloid and lymphoblastic leukemias based on the ex­
pression of 7129 genes. The training set consists of 38 examples and the test set of 34 
examples. Using all genes a linear SVM makes 1 error on the test set. Using 20 genes a 
errors are made for R2W2 and 3 errors are made using the Fisher score. Using 5 genes 
1 error is made for R2W 2 and 5 errors are made for the Fisher score. The method of [6] 
performs comparably to the Fisher score. 

The second problem was discriminating B versus T cells for lymphoblastic cells [6]. Stan­
dard linear SVMs make 1 error for this problem. Using 5 genes a errors are made for 
R 2W 2 and 3 errors are made using the Fisher score. 



In the colon cancer problem [1] 62 tissue samples probed by oligonucleotide arrays contain 
22 normal and 40 colon cancer tissues that must be discriminated based upon the expression 
of 2000 genes. Splitting the data into a training set of 50 and a test set of 12 in 50 separate 
trials we obtained a test error of 13% for standard linear SVMs. Taking 15 genes for each 
feature selection method we obtained 12.8% for R 2W 2 , 17.0% for Pearson correlation 
coefficients, 19.3% for the Fisher score and 19.2% for the Kolmogorov-Smirnov test. Our 
method is only worse than the best filter method in 8 of the 50 trials. 

6 Conclusion 

In this article we have introduced a method to perform feature selection for SVMs. This 
method is computationally feasible for high dimensional datasets compared to existing 
wrapper methods, and experiments on a variety of toy and real datasets show superior 
performance to the filter methods tried. This method, amongst other applications, speeds up 
SVMs for time critical applications (e.g pedestrian detection), and makes possible feature 
discovery (e.g gene discovery). Secondly, in simple experiments we showed that SVMs can 
indeed suffer in high dimensional spaces where many features are irrelevant. Our method 
provides one way to circumvent this naturally occuring, complex problem. 
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