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Abstract 

We present methods for learning and tracking human motion in 
video. We estimate a statistical model of typical activities from a 
large set of 3D periodic human motion data by segmenting these 
data automatically into "cycles". Then the mean and the princi­
pal components of the cycles are computed using a new algorithm 
that accounts for missing information and enforces smooth tran­
sitions between cycles. The learned temporal model provides a 
prior probability distribution over human motions that can be used 
in a Bayesian framework for tracking human subjects in complex 
monocular video sequences and recovering their 3D motion. 

1 Introduction 

The modeling and tracking of human motion in video is important for problems as 
varied as animation, video database search, sports medicine, and human-computer 
interaction. Technically, the human body can be approximated by a collection of 
articulated limbs and its motion can be thought of as a collection of time-series 
describing the joint angles as they evolve over time. A key challenge in modeling 
these joint angles involves decomposing the time-series into suitable temporal prim­
itives. For example, in the case of repetitive human motion such as walking, motion 
sequences decompose naturally into a sequence of "motion cycles" . In this work, 
we present a new set of tools that carry out this segmentation automatically using 
the signal-to-noise ratio of the data in an aligned reference domain. This procedure 
allows us to use the mean and the principal components of the individual cycles in 
the reference domain as a statistical modeL Technical difficulties include missing in­
formation in the motion time-series (resulting from occlusions) and the necessity of 
enforcing smooth transitions between different cycles. To deal with these problems, 



we develop a new iterative method for functional Principal Component Analysis 
(PCA). The learned temporal model provides a prior probability distribution over 
human motions that can be used in a Bayesian framework for tracking. The details 
of this tracking framework are described in [7] and are briefly summarized here. 
Specifically, the posterior distribution of the unknown motion parameters is repre­
sented using a discrete set of samples and is propagated over time using particle 
filtering [3 , 7]. Here the prior distribution based on the PCA representation im­
proves the efficiency of the particle filter by constraining the samples to the most 
likely regions of the parameter space. The resulting algorithm is able to track hu­
man subjects in monocular video sequences and to recover their 3D motion under 
changes in their pose and against complex unknown backgrounds. 

Previous work on modeling human motion has focused on the recognition of ac­
tivities using Hidden Markov Models (HMM's), linear dynamical models, or vector 
quantization (see [7 , 5] for a summary of related work). These approaches typically 
provide a coarse approximation to the underlying motion. Alternatively, explicit 
temporal curves corresponding to joint motion may be derived from biometric stud­
ies or learned from 3D motion-capture data. In previous work on principal com­
ponent analysis of motion data, the 3D motion curves corresponding to particular 
activities had typically to be hand-segmented and aligned [1, 7, 8]. By contrast, 
this paper details an automated method for segmenting the data into individual 
activities, aligning activities from different examples, modeling the statistical vari­
ation in the data, dealing with missing data, enforcing smooth transitions between 
cycles, and deriving a probabilistic model suitable for a Bayesian interpretation. We 
focus here on cyclic motions which are a particularly simple but important class of 
human activities [6]. While Bayesian methods for tracking 3D human motion have 
been suggested previously [2 , 4], the prior information obtained from the functional 
PCA proves particularly effective for determining a low-dimensional representation 
of the possible human body positions [8 , 7]. 

2 Learning 

Training data is provided by a commercial motion capture system describes the 
evolution of m = 19 relative joint angles over a period of about 500 to 5000 frames. 
We refer to the resulting multivariate time-series as a "motion sequence" and we 
use the notation Zi (t) == {Za ,i (t) la = 1, ... , m} for t = 1, ... ,T; to denote the an­
gle measurements. Here T; denotes the length of sequence i and a = 1, ... , m 
is the index for the individual angles. Altogether, there are n = 20 motion 
sequences in our training set. Note that missing observations occur frequently 
as body markers are often occluded during motion capture. An associated set 
Ia, i == {t E {I, ... , T;} I za ,; (t) is not missing} indicates the positions of valid data. 

2.1 Sequence Alignment 

Periodic motion is composed of repetitive "cycles" which constitute a natural unit 
of statistical modeling and which must be identified in the training data prior to 
building a model. To avoid error-prone manual segmentation we present alignment 
procedures that segment the data automatically by separately estimating the cy­
cle length and a relative offset parameter for each sequence. The cycle length is 
computed by searching for the value p that maximizes the "signal-to-noise ratio": 

. _ " signali ,a (p) 
stn_ratzo;(p) = ~ . () , 

a nozse;,a p 
(1) 
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Figure 1: Left: Signal-to-noise ratio of a representative set of angles as a function 
of the candidate period length. Right: Aligned representation of eight walking 
sequences. 

where noisei ,a (p) is the variation in the data that is not explained by the mean 
cycle, z, and signal;,a (P) measures the signal intensity. 1 In Figure 1 we show the 
individual signal-to-noise ratios for a subset of the angles as well as the accumulated 
signal-to-noise ratio as functions of p in the range {50, 51, ... , 250}. Note the peak 
of these values around the optimal cycle length p = 126. Note also that the signal­
to-noise ratio of the white noise series in the first row is approximately constant , 
warranting the unbiasedness of our approach. 

Next, we estimate the offset parameters , 0, to align multiple motion sequences in 
a common domain. Specifically, we choose 0(1) , 0(2) , ... , o(n) so that the shifted 
motion sequences minimize the deviation from a common prototype model by anal­
ogy to the signal-to-noise-criterion (1). An exhaustive search for the optimal offset 
combination is computationally infeasible. Instead , we suggest the following iter­
ative procedure: We initialize the offset values to zero in Step 1, and we define a 
reference signal ra in Step 2 so as to minimize the deviation with respect to the 
aligned data. This reference signal is a periodically constrained regression spline 
that ensures smooth transitions at the boundaries between cycles. Next, we choose 
the offsets of all sequences so that they minimize the prediction error with respect 
to the reference signal (Step 3). By contrast to the exhaustive search, this operation 
requires 00:=7=1 p(i)) comparisons. Because the solution of the first iteration may 
be suboptimal, we construct an improved reference signal using the current offset 
estimates, and use this signal in turn to improve the offset estimates. Repeating 
these steps, we obtain an iterative optimization algorithm that is terminated if the 
improvement falls below a given threshold . Because Steps 2 and 3 both decrease the 
prediction error, so that the algorithm converges monotonically. Figure 1 (right) 
shows eight joint angles of a walking motion, aligned using this procedure. 

2.2 Functional peA 

The above alignment procedures segment the training data into a collection of 
cycle-data called "slices". Next, we compute the principal components of these 
slices , which can be interpreted as the major sources of variation in the data. The 
algorithm is as follows 

lThe mean cycle is obtained by "folding" the original sequence into the domain 
{I, . .. ,p}. For brevi ty, we don't provide formal definitions here; see [5]. 



1. For a = 1, ... , m and i = 1, ... , n: 

(a) Dissect Zi,a into K i cycles of length p(i), marlcing missing values at both 

ends. This gives a new set of time series Z~l ) for k = 1, ... , K i where 

K i = I T';(~f ) 1 + 1. Let h,a b e the new index ~:t for this series. 

(b) Compute functional estimates in the domain [0,1]. 
(c) Resample the data in the reference domain, imputing missing observations. 

This gives yet another time-series zk~~ (j) := ik ,a ( 1=) for j = 0,1, ... , T. 

2. Stack the "slices" zk2 ) obtained from all sequences row-wise into a 2:: . Ki X mT 
design matrix X. ,a • 

3. Compute the row-mean /1. of X, and let X(1) := X - l'p. 1 is a vector of ones. 

4. Slice by slice, compute the Fourier coefficients of X(1), and store them in a new 
matrix, X(2). Use the first 20 coefficients only. 

5. Compute the Singular Value Decomposition of X(2): X(2) = USV'. 

6. Reconstruct X(2), using the rank q approximation to S: X(3) = usqv'. 
7. Apply the Inverse Fourier Transform and add I' p to obtain X(4). 

8. Impute the missing values in X using the corresponding values in X(4). 

9. Evaluate IIX - X(4) II. Stop, if the performance improvement is b elow 10-6 . 

O therwise, goto Step 3. 

Our algorithm addresses several difficulties. First, even though the individual mo­
tion sequences are aligned in Figure I , they are still sampled at different frequencies 
in the reference domain due to the different alignment parameters. This problem 
is accommodated in Step lc by resampling after computing a functional estimate 
in continuous time in Step lb. Second, missing data in the design matrix X means 
we cannot simply use the Singular Value Decomposition (SVD) of X(l) to obtain 
the principal components. Instead we use an iterative approximation scheme [9] in 
which we alternate between an SVD step (4 through 7) and a data imputation step 
(8) , where each update is designed so as to decrease the matrix distance between X 
and its reconstruction, X(4 ) . Finally, we need to ensure that the mean estimates and 
the principal components produce a smooth motion when recombined into a new 
sequence. Specifically, the approximation of an individual cycle must be periodic in 
the sense that its first two derivatives match at the left and the right endpoint. This 
is achieved by translating the cycles into a Fourier domain and by truncating high­
frequency coefficients (Step 4). Then we compute the SVD in the Fourier domain 
in Step 5, and we reconstruct the design matrix using a rank-q approximation in 
Steps 6 and 7, respectively. In Step 8 we use the reconstructed values as improved 
estimates for the missing data in X, and then we repeat Steps 4 through 7 using 
these improved estimates. This iterative process is continued until the performance 
improvement falls below a given threshold. As its output, the algorithm generates 
the imputed design matrix, X, as well as its principal components. 

3 Bayesian Tracking 

In tracking, our goal is to calculate the posterior probability distribution over 3D 
human poses given a sequence of image measurements, It. The high dimensionality 
of the body model makes this calculation computationally demanding. Hence, we 
use the learned model above to constrain the body motions to valid walking motions. 
Towards that end , we use the SVD of X(2) to formulate a prior distribution for 
Bayesian tracking. 



Formally, let O(t) == (Oa(t)la = 1, ... , m) be a random vector of the relative joint 
angles at time t; i.e., the value of a motion sequence, Zi(t), at time t is interpreted 
as the i-th realization of O(t). Then O(t) can be written in the form 

q 

O(t) = ji(1/!t) + L Ct,kVk(1/!t) , (2) 
k=l 

where Vk is the Fourier inverse of the k-th column of V, rearranged as an T X m­
matrix; similarly, j1, denotes the rearranged mean vector J.L. Vk (1/! ) is the 1/!-th column 
of Vk, and the Ct,k are time-varying coefficients. 1/!t E {O, T -I} maps absolute time 
onto relative cycle positions or phases, and Pt denotes the speed of the motion 
such that 1/!t+l = (1/!t + pt) mod T Given representation (2), body positions are 
characterized entirely by the low-dimensional state-vector cPt = (Ct, 1/!t, Pt, -ri, Oi)" 
where Ct = (Ct,l, ... , Ct ,q) and where -ri and 0i represent the global 3D translation 
and rotation of the torso, respectively. Hence we the problem is to calculate the 
posterior distribution of cPt given images up to time t. Due to the Markovian 
structure underlying cPt, this posterior distribution is given recursively by: 

(3) 

Here p(It I cPt ) is the likelihood of observing the image It given the parameters and 

P(cPt-l I It-I) is the posterior probability from the previous instant. p(cPt I cPt-d 
is a temporal prior probability distribution that encodes how the parameters cPt 
change over time. The elements of the Bayesian approach are summarized below; 
for details the reader is referred to [7]. 

Generative Image Model. Let M(It, cPt) be a function that takes image texture 
at time t and, given the model parameters, maps it onto the surfaces of the 3D 
model using the camera model. Similarly, let M-1 (-) take a 3D model and project 
its texture back into the image. Given these functions, the generative model of 
images at time t + 1 can be viewed as a mapping from the image at time t to images 
at time t + 1: 

It+1 = M-l(M(It, cPt) , cPt+l) + 17 , 17 ~ G(O, 0") , 

where G(O, 0") denotes a Gaussian distribution with zero mean and standard devia­
tion 0" and 0" depends on the viewing angle of the limb with respect to the camera 
and increases as the limb is viewed more obliquely (see [7] for details) . 

Temporal Prior. The temporal prior, p(cPt I cPt-d, models how the parameters 
describing the body configuration are expected to vary over time. The individual 
components of cP , (Ct, 1/!t, Pt , -ri, on , are assumed to follow a random walk with 
Gaussian increments. 

Likelihood Model. Given the generative model above we can compare the image 
at time t - 1 to the image It at t. Specifically, we compute this likelihood term 
separately for each limb. To avoid numerical integration over image regions, we 
generate ns pixel locations stochastically. Denoting the ith sample for limb j as 
Xj ,i, we obtain the following measure of discrepancy: 

n 

E == L(It(xj,i ) - M-1(M(It_ 1, cPt-I), cPt)(Xj ,i ))2. (4) 
i =l 

As an approximate likelihood term we use 

p(ItlcPt) = II ~Ctj) exp(-E/(2u(Ctj)2ns)) + (1- q(Ctj))Poccluded, (5) 
. 21r0"(Ctj) 

J 



Figure 2: Tracking of person walking, 10000 samples. Upper rows: frames 0, 10, 20, 
30, 40, 50 with the projection of the expected model configuration overlaid. Lower row: 
expected 3D configuration in the same frames. 

where Poccluded is a constant probability that a limb is occluded, aj is the angle 
between the limb j principal axis and the image plane of the camera, 0"( a j) is a 
function that increases with narrow viewing angles, and q(aj) = cos(aj) if limb j 
is non-occluded, or 0 if limb j is occluded. 

Partical Filter. As it is typical for tracking problems, the posterior distribution 
may well be multi-modal due to the nonlinearity of the likelihood function. Hence, 
we use a particle filter for inference where the posterior is represented as a weighted 
set of state samples, ¢;, which are propagated in time. In detail, we use N. ~ 104 

particles in our experiments. Details of this algorithm can be found in [3, 7]. 

4 Experiment 

To illustrate the method we show an example of tracking a walking person in a 
cluttered scene in Figure 2. The 3D motion is recovered from a monocular sequence 
using only the motion between frames. To visualize the posterior distribution we 
display the projection of the 3D model corresponding to the expected value of 
the model parameters: ~, ~~1 Pi¢; where P; is the likelihood of sample ¢;. All 
parameters were initialized manually with a Gaussian prior at time t = O. The 
learned model is able to generalize to the subject in the sequence who was not part 
of the training set. 

5 Conclusions 

We described an automated method for learning periodic human motions from 
training data using statistical methods for detecting the length of the periods in the 



data, segmenting it into cycles, and optimally aligning the cycles. We also presented 
a PCA method for building a statistical eigen-model of the motion curves that copes 
with missing data and enforces smoothness between the beginning and ending of a 
motion cycle. The learned eigen-curves are used as a prior probability distribution 
in a Bayesian tracking framework. Tracking in monocular image sequences was 
performed using a particle filtering technique and results were shown for a cluttered 
Image sequence. 
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