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Abstract 

This paper presents predictive gain scheduling, a technique for simplify­
ing reinforcement learning problems by decomposition. Link admission 
control of self-similar call traffic is used to demonstrate the technique. 
The control problem is decomposed into on-line prediction of near-fu­
ture call arrival rates, and precomputation of policies for Poisson call ar­
rival processes. At decision time, the predictions are used to select 
among the policies. Simulations show that this technique results in sig­
nificantly faster learning without any performance loss, compared to a 
reinforcement learning controller that does not decompose the problem. 

1 Introduction 
In multi-service communications networks, such as Asynchronous Transfer Mode (ATM) 
networks, resource control is of crucial importance for the network operator as well as for 
the users. The objective is to maintain the service quality while maximizing the operator's 
revenue. At the call level , service quality (Grade of Service) is measured in terms of call 
blocking probabilities, and the key resource to be controlled is bandwidth. Network routing 
and call admission control (CAC) are two such resource control problems. 

Markov decision processes offer a framework for optimal CAC and routing [1]. By model­
ling the dynamics of the network with traffic and computing control policies using dynamic 
programming [2] , resource control is optimized. A standard assumption in such models is 
that calls arrive according to Poisson processes. This makes the models of the dynamics 
relatively simple. Although the Poisson assumption is valid for most user-initiated requests 
in communications networks, a number of studies [3, 4, 5] indicate that many types of arriv­
al processes in wide-area networks as well as in local area networks are statistically self­
similar. This makes it difficult to find models of the dynamics, and the models become large 
and complex. If the number of system states is large, straightforward application of dynam­
ic programming is unfeasible. Nevertheless, the "fractal" burst structure of self-similar 
traffic should be possible to exploit in the design of efficient resource control methods. 

We have previously presented a method based on temporal-difference (TD) learning for 
CAC of self-similar call traffic, which yields higher revenue than a TD-based controller 
assuming Poisson call arrival processes [7]. However, a drawback of this method is the slow 
convergence of the control policy. This paper presents an alternative solution to the above 



problem, called predictive gain scheduling. It decomposes the control problem into two 
parts: time-series prediction of near-future call arrival rates and precomputation of a set of 
control policies for Poisson call arrival processes. At decision time, a policy is selected 
based on these predictions. Thus, the self-similar arrival process is approximated by a qua­
si-stationary Poisson process. The rate predictions are made by (artificial) neural networks 
(NNs), trained on-line. The policies can be computed using dynamic programming or other 
reinforcement learning techniques [6]. 

This paper concentrates on the link admission control problem. However, the controllers 
we describe can be used as building block in optimal routing, as shown in [8] and [9]. Other 
recent work on reinforcement learning for CAC and routing includes [10], where Marbach 
et al. show how to extend the use of TD learning to network routing, and [11] where Tong 
et al. apply reinforcement learning to routing subject to Quality of Service constraints. 

2 Self-Similar Call Arrival Processes 

The limitations of the traditional Poisson model for network arrival processes have been 
demonstrated in a number of studies, e.g. [3, 4, 5], which indicate the existence of heavy­
tailed inter-arrival time distributions and long-term correlations in the arrival processes. 
Self-similar (fractal-like) models have been shown to correspond better with this traffic. 

A self-similar arrival process has no "natural" burst length. On the contrary, its arrival in­
tensity varies considerably over many time scales. This makes the variance of its sample 
mean decay slowly with the sample size, and its auto-correlation function decay slowly 
with time, compared to Poisson traffic [4]. 

The complexity of control and prediction of Poisson traffic is reduced by the memory-less 
property of the Poisson process: its expected future depends on the arrival intensity, but not 
on the process history. On the other hand, the long-range dependence of self-similar traffic 
makes it possible to improve predictions of the process future by observing the history. 

A compact statistical measure of the degree of self-similarity of a stochastic process is the 
Hurst parameter [4]. For self-similar traffic this parameter takes values in the interval 
(0.5, 1], whereas Poisson processes have a Hurst parameter of 0.5. 

3 The Link Admission Control Problem 

In the link admission control (LAC) problem, a link with capacity C [units/s] is offered calls 
from K different service classes. Calls belonging to such a class j E J = {I, ... , K} have 
the same bandwidth requirements hj [units/s]. The per-class call holding times are assumed 
to be exponentially distributed with mean 1/ftj [s]. 

Access to the link is controlled by a policy:rc that maps states x E X to actions a EA,:rc: 
X -+ A. The set X contains all feasible link states, and the action set is 

A = ((ai, ... ,aK ) : aj E {O, Il,j E J), 
where aj is ° for rejecting a presumptive class-j call and 1 for accepting it. The set of link 
states is given by X = N x H, where N is the set of feasible call number tuples, and His 
the Cartesian product of some representations, '1, of the history of the per-class call arrival 
processes (needed because of the memory of self-similar arrival processes). N is given by 

N = {n : nj ;:: 0, j E J; Injhj ::; C}' 
jEJ 

where nj is the number of type-j calls accepted on the link. 



We assume uniform call charging, which means that the reward rate p(t) at time t is equal 
to the carried bandwidth: 

pet) = p(x(t» = I n/t)bj (1) 
jEl 

Time evolves continuously, with discrete call arrival and departure events, enumerated by 
k = 0,1,2, ... Denote by rk+l the immediate reward obtained from entering a state Xk at 
time tk until entering the next state Xk+l at time tk+1• The expectation of this reward is 

E,,{rk+l} = E,,{P(Xk)[tk+1 - t,)} = P(Xk)1:(X",:rr(Xk» (2) 

where t'(xk,:rr) is the expected sojourn time in state Xk under policy:rr. 

By taking optimal actions, the policy controls the probabilities of state transitions so as to 
increase the probability of reaching states that yield high long-term rewards. The objective 
of link: admission control is to find a policy :rr that maximizes the average reward per stage: 

R(,,) ~ )~"! E.{~ ~ 'He I X, ~ x}. x E X (3) 

Note that the average reward does not depend on the initial state x, as the contribution from 
this state to the average reward tends to zero as N -+ 00 (assuming, for example, that the 
probability of reaching any other state y E X from every state x E X is positive). 

Certain states are of special interest for the optimal policy. These are the states that are can­
didates for intelligent blocking. The set of such states Xib C X is given by Xib = Nib X H, 
where Nib is the set of call number tuples for which the available bandwidth is a multiple 
of the bandwidth of a wideband call. In the states of X ib , the long-term reward may be in­
creased by rejecting narrowband calls to reserve bandwidth for future, expected wideband 
calls. 

4 Solution by Predictive Gain Scheduling 

Gain scheduling is a control theory technique, where the parameters of a controller are 
changed as a function of operating conditions [12]. The approach taken here is to look up 
policies in a table from predictions of the near-future per-class call arrival rates. 

For Poisson call arrival processes, the optimal policy for the link: admission control prob­
lem does not depend on the history, H, of the arrival processes. Due to the memory-less 
property, only the (constant) per-class arrival rates Aj , j E J, matter. In our gain scheduled 
control of self-similar call arrival processes, near-future Aj are predicted from hj- The self­
similar call arrival processes are approximated by quasi-stationary Poisson processes, by 
selecting precomputed polices (for Poisson arrival processes) based on predicted A/s. One 
radial-basis function (REF) NN per class is trained to predict its near-future arrival rate. 

4.1 Solving the Link Admission Control problem for Poisson Traffic 

For Poisson call arrival processes, dynamic programming offers well-established tech­
niques for solving the LAC problem [1]. In this paper, policy iteration is used. It involves 
two steps: value determination and policy improvement. 

The value determination step makes use of the objective function (3), and the concept of 
relative values [1]. The difference v(x,:rr) - v(y,:rr) between two relative values under a 
policy :rr is the expected difference in accumulated reward over an infinite time interval, 
starting in state X instead of state y. In this paper, the relative values are computed by solving 
a system of linear equations, a method chosen for its fast convergence. The dynamics of 



the system are characterized by state transition probabilities, given by the policy, the per­
class call arrival intensities, (,q, and mean holding times, (1/,ll J 
The policy improvement step consists of finding the action that maximizes the relative val­
ue at each state. After improving the policy, the value determination and policy improve­
ment steps are iterated until the policy does not change [9]. 

4.2 Determining The Prediction Horizon 

Over what future time horizon should we predict the rates used to select policies? In this 
work, the prediction horizon is set to an average of estimated mean first passage times from 
states back to themselves, in the following referred to as the mean return time. The arrival 
process is approximated by a quasi-stationary Poisson process within this time interval. 

The motivation for this choice of prediction horizon is that the effects of a decision (action) 
in a state Xd influence the future probabilities of reaching other states and receiving the as­
sociated rewards, until the state Xd is reached the next time. When this happens, a new deci­
sion can be made, where the previous decision does no longer influence the future expected 
reward. In accordance with the assumption of quasi-stationarity, the mean return time can 
be estimated for call tuples n instead of the full state descriptor, x. 

In case of Poisson call arrival processes, the mean first passage times E,.{ Tin} from other 
states to a state n are the unique solution of the linear system of equations 

E,,{TmJ = T(m, a) + I E,, {Tln }, m E N\{n}, a = n(m) (4) 
IEN\!n} 

The limiting probability qn of occupying state n is determined for all states that are candi­
dates for intelligent blocking, by solving a linear system of equations qB = 0. B is a matrix 
containing the state transition intensities, given by (Aj} and (1/,llj}. 

The mean return time for the link, TI, is defmed as the average of the individual mean return 
times of the states of Nib, weighted by their limiting probabilities and normalized: 

(5) 

For ease of implementation, this time window is expressed as a number of call arrivals. The 
window length Lj for class j is computed by multiplying the mean return time by the arrival 
rate, Lj = Aj T[, and rounding off to an integer. Although the window size varies with Aj, 
this variation is partly compensated by T[ decreasing with increasing Aj • 

4.3 Prediction of Future Call Arrival Rates 

The prediction of future arrival call rates is naturally based on measures of recent arrival 
rates. In this work, the following representation of the history of the arrival process is used: 
for all classes j E J, exponentially weighted running averages hj = (hj), ... , hjM) of the in­
ter-arrival times are computed on different time scales. These history vectors are computed 
using forgetting factors {a), ... ,aM } taking values in the interval (0, 1): 

hik) = a i[t/k) - t/k - 1) 1 + (1 - a;)hik - 1) , 

where fj(k) is the arrival time of the k-th call from class j. 

(6) 

In studies of time-series prediction, non-linear feed-forward NN s outperform linear predic­
tors on time series with long memory [13]. We employ RBF NNs with symmetric Gaussian 
basis functions. The activations of the RBF units are normalized by division by the sum of 
activations, to produce a smooth output function. The locations and widths of the RBF units 
can be determined by inspection of the data sets, to cover the region of history vectors. 



The NN is trained with the average inter-arrival time as target. After every new call arrival, 
the prediction error €j(k) is computed: 

Lj 

Elk) = L I [ t(k + i) - t(k + i-I)] - y/k). 
J i~ ' 

(7) 

Learning is performed on-line using the least mean squares rule, which means that the up­
d)lting must be delayed by Lj call arrivals. The predicted per-class arrival rates 
A/k) = y(k)-' are used to select a control policy on the arrival of a call request. 

Given the prediction horizon and the arrival rate predictor, ai' ... ,aM can be tuned by linear 
search to minimize the prediction error on sample traffic traces. 

5 Numerical study 
The performance of the gain scheduled admission controller was evaluated on a simulated 
link with capacity C = 24 [units/s], that was offered calls from self-similar call arrival pro­
cesses. For comparison, the simulations were repeated with three other link admission con­
trollers: two TD-based controllers, one table-based and one NN based, and a controller us­
ing complete sharing, i.e. to accept a call if the free capacity on the link is sufficient. 

The NN based TD controller [7] uses RBF NNs (one per n EN), receiving (h" h2) as input. 
Each NN has 65 hidden units, factorized to 8 units per call class, plus a default activation 
unit. Its weights were initialized to favor acceptance of all feasible calls in all states. 

The table-based TD controller assumes Poisson call arrival processes. From this, it follows 
that the call number tuples n E N constitute Markovian states. Consequently, the value 
function table stores only one value per n. This controller was used for evaluation of the 
performance loss from incorrectly modelling self-similar call traffic by Poisson traffic. 

5.1 Synthesis of Call Traffic 

Synthetic traffic traces were generated from a Gaussian fractional auto-regressive inte­
grated moving average model, FARIMA (0, d, 0). This results in a statistically self-similar 
arrival process, where the Hurst parameter is easily tuned [7]. 

We generated traces containing arrival/departure pairs from two call classes, characterized 
by bandwidth requirements bi = 1 (narrow-band) and ~ = 6 (wide-band) [units/s] and call 
holding times with mean 1/,u1 = 1/,u2= 1 [s]. A Hurst parameter of 0.85 was used, and the 
call arrival rates were scaled to make the expected long-term arrival rates A, and A2 for the 
two classes fulfill b,A,/,u, + b).2/,u2 = 1.25 C. The ratio A,/A2 was varied from 0.4 to 
2.0. 

5.2 Gain Scheduling 

For simplicity, a constant prediction horizon was used throughout the simulations. This was 
computed according to section 4.2. By averaging the resulting prediction windows for 
A,/A2 = 0.4, 1.0 and 2.0, a window size L, = L2 = 6 was obtained. 

A A 

The table of policies to be used for gain scheduling was computed for predicted A, and A2 
ranging from 0.5 to 15 with step size 0.5; in total 900 policies. The two rate-prediction NNs 
both had 9 hidden units . The NNs' weights were initialized to O. 

5.3 Numerical results 

Both the TD learning controllers and the gain scheduling controller were allowed to adapt 
to the first 400 000 simulated call arrivals of the traffic traces. The throughput obtained by 
all four methods was measured on the subsequent 400000 call arrivals. 



o 1000 2000 3000 4000 0.5 1 1.5 2 2.5 3 3.5 4.0 
call arrivals x 105 call arrivals 

(a) Initial weight evolution in neural predictor (b) Long-term weight evolution in neural predictor 

11 

9 

1.5 2 2.5 3 3.5 4.0 
x 105 call arrivals 

Throughput [units/s] 

17.4 
17.2 
17.0 
16.8 
16.6 
16.4 
16.2 
16.0 
15.8 

GSIRBF 

TDIRBF 

TDITBL 

CS 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

AdA2 
(c) Weight evolution in NN based TD controller (d) Throughput versus arrival rate ratio 

Figure 1: Weight evolution for NN predictor (a, b); NN based TD-controller (c). Performance (d). 

Figure 1 (a, b) shows the evolution of the weights of the call arrival rate predictor for class 
2, and figure 1 (c) displays nine weights of the RBF NN corresponding to the call number 
tuple (n!, n2) = (6,2), which is a candidate for intelligent blocking. These weights corre­
spond to eight different class-2 center vectors, plus the default activation. 

The majority of the weights of the gain scheduling RBF NN seems to converge in a few 
thousand call arrivals, whereas the TD learning controller needs about tOO 000 call arrivals 
to converge. This is not surprising, since the RBF NNs of the TD learning controllers split 
up the set of training data, so that a single NN is updated much less frequently than a rate­
predicting NN in the gain scheduling controller. Secondly, the TD learning NNs are trained 
on moving targets, due to the temporal-difference learning rule, stochastic action selection 
and a changing policy. 

A few of the weights of the gain scheduling NN change considerably even after long train­
ing. These weights correspond to RBF units that are activated by rare, large inputs. 

Figure t (d) evaluates performance in terms of throughput versus arrival rate ratio. Each 
data point is the averaged throughput for 10 traffic traces. Gain scheduling (GS/RBF) 
achieves the same throughput as TD learning with RBF NNs (TD/RBF), up to 1.3% 
compared to tabular TD learning (TDITBL), and up to 5.7% better than complete sharing 
(CS). The difference in throughput between TD learning and complete sharing is greatest 
for low arrival rate ratios, since the throughput increase by reserving bandwidth for high­
rate wideband calls is considerably higher than the loss of throughput from the blocked low­
rate narrowband traffic. 



6 Conclusion 
We have presented predictive gain scheduling, a technique for decomposing reinforcement 
learning problems. Link admission control, a sub-problem of network routing, was used 
to demonstrate the technique. By predicting near-future call arrival rates from one part of 
the full state descriptor, precomputed policies for Poisson call arrival processes (computed 
from the rest of the state descriptor) were selected. This increased the on-line convergence 
rate approximately 50 times, compared to a TD-based admission controller getting the full 
state descriptor as input. The decomposition did not result in any performance loss. 

The computational complexity of the controller using predictive gain scheduling may 
reach a computational bottleneck if the size of the state space is increased: the determina­
tion of optimal policies for Poisson traffic by policy iteration. This can be overcome by state 
aggregation [2], or by parametrization the relative value function combined with temporal­
difference learning [10]. It is also possible to significantly reduce the number of relative 
value functions . In [14], we showed that linear interpolation of relative value functions dis­
tributed by an error-driven algorithm enables the use of less than 30 relative value functions 
without performance loss. Further, we have successfully employed gain scheduled link ad­
mission control as a building block of network routing [9], where the performance improve­
ment compared to conventional methods is larger than for the link admission control prob­
lem. 

The use of gain scheduling to reduce the complexity of reinforcement learning problems 
is not limited to link admission control. In general, the technique should be applicable to 
problems where parts of the state descriptor can be used, directly or after preprocessing, 
to select among policies for instances of a simplified version of the original problem. 
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