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We demonstrate that statistical analysis of ill-posed data sets is 
subject to a bias, which can be observed when projecting indepen­
dent test set examples onto a basis defined by the training exam­
ples. Because the training examples in an ill-posed data set do not 
fully span the signal space the observed training set variances in 
each basis vector will be too high compared to the average vari­
ance of the test set projections onto the same basis vectors. On 
basis of this understanding we introduce the Generalizable Singu­
lar Value Decomposition (GenSVD) as a means to reduce this bias 
by re-estimation of the singular values obtained in a conventional 
Singular Value Decomposition, allowing for a generalization perfor­
mance increase of a subsequent statistical model. We demonstrate 
that the algorithm succesfully corrects bias in a data set from a 
functional PET activation study of the human brain. 

1 Ill-posed Data Sets 

An ill-posed data set has more dimensions in each example than there are examples. 
Such data sets occur in many fields of research typically in connection with image 
measurements. The associated statistical problem is that of extracting structure 
from the observed high-dimensional vectors in the presence of noise. The statistical 
analysis can be done either supervised (Le. modelling with target values: classifi­
cation, regresssion) or unsupervised (modelling with no target values: clustering, 
PCA, ICA). In both types of analysis the ill-posedness may lead to immediate prob­
lems if one tries to apply conventional statistical methods of analysis, for example 
the empirical covariance matrix is prohibitively large and will be rank-deficient. 

A common approach is to use Singular Value Decomposition (SVD) or the analogue 
Principal Component Analysis (PCA) to reduce the dimensionality of the data. Let 
the N observed i-dimensional samples Xj, j = L .N, collected in the data matrix 
X = [Xl .. . XN] of size I x N, I> N . The SVD-theorem states that such a matrix 
can be decomposed as 

(1) 



where U is a matrix of the same size as X with orthogonal basis vectors spanning 
the space of X, so that UTU = INxN. The square matrix A contains the singular 
values in the diagonal, A = diag( AI, ... , >w), which are ordered and positive Al ~ 
A2 ~ ... ~ AN ~ 0, and V is N x N and orthogonal V TV = IN. If there is a mean 
value significantly different from zero it may at times be advantageous to perform 
the above analysis on mean-subtracted data, i.e. X - X = U A V T where columns 
of X all contain the mean vector x = Lj xj/N. 

Each observation Xj can be expressed in coordinates in the basis defined by the 
vectors of U with no loss of information[Lautrup et al., 1995]. A change of basis is 
obtained by qj = U T Xj as the orthogonal basis rotation 

Q = [ql ... qN] = U T X = UTUAVT = AVT. (2) 

Since Q is only N x Nand N « I, Q is a compact representation of the data. Having 
now N examples of N dimension we have reduced the problem to a marginally ill­
posed one. To further reduce the dimensionality, it is common to retain only a 
subset of the coordinates, e.g. the top P coordinates (P < N) and the supervised 
or unsupervised model can be formed in this smaller but now well-posed space. 

So far we have considered the procedure for modelling from a training set. Our 
hope is that the statistical description generalizes well to new examples proving 
that is is a good description of the generating process. The model should, in other 
words, be able to perform well on a new example, x*, and in the above framework 
this would mean the predictions based on q* = U T x* should generalize well. We 
will show in the following, that in general, the distribution of the test set projection 
q* is quite different from the statistics of the projections of the training examples 
qj. It has been noted in previous work [Hansen and Larsen, 1996, Roweis, 1998, 
Hansen et al., 1999] that PCA/SVD of ill-posed data does not by itself represent a 
probabilistic model where we can assign a likelihood to a new test data point, and 
procedures have been proposed which make this possible. In [Bishop, 1999] PCA has 
been considered in a Bayesian framework, but does not address the significant bias 
of the variance in training set projections in ill-posed data sets. In [Jackson, 1991] 
an asymptotic expression is given for the bias of eigen-values in a sample covariance 
matrix, but this expression is valid only in the well-posed case and is not applicable 
for ill-posed data. 

1.1 Example 

Let the signal source be I-dimensional multivariate Gaussian distribution N(O,~) 
with a covariance matrix where the first K eigen-values equal u 2 and the last 1- K 
are zero, so that the covariance matrix has the decomposition 

~=u2YDyT, D=diag(1, ... ,1,0, ... ,0), yTY=I (3) 

Our N samples of the distribution are collected in the matrix X = [Xij] with the 
SVD 

A = diag(Al, ... , AN) (4) 
and the representation ofthe N examples in the N basis vector coordinates defined 
by U is Q = [%] = U T X = A V T. The total variance per training example is 

~ LX;j ~Tr(XTX) = ~Tr(VAUTUAVT) = ~Tr(VA2VT) 
i,j 

= ~ Tr(VVT A2) = ~ Tr(A2) = ~L A; 
i 

(5) 



Note that this variance is the same in the U-basis coordinates: 

1 '" 2 N L...J qij = ~Tr(QTQ) = ~Tr(VA2VT) = ~ LA~ 
i,j i 

We can derive the expected value of this variance: 

(~ LX;) = (LxL) = (x? Xl) = Tr:E = a2 K 
i ,j 

(6) 

(7) 

Now, consider a test example X* '" N(O,:E) with the projection q* = U T x* which 
will have the average total variance 

(Tr[(UT x*{ (UT x*)]) = Tr [(x*x* T)UUT] 

Tr[:EUUT] = Tr[DUUT] = a2min(N,K) (8) 

In summary, this means that the orthogonal basis U computed from the training set 
spans all the variance in the training set but fails to do so on the test examples when 
N < K, i.e. for ill-posed data. The training set variance is K / N a 2 on average per 
coordinate, compared to a 2 for the test examples. So which of the two variances is 
"correct" ? From a modelling point of view, the variance from the test example tells 
us the true story, so the training set variance should be regarded as biased. This 
suggests that the training set singular values should be corrected for this bias, in the 
above example by re-estimating the training set projections using Q = J N / K Q. 

In the more general case we do not know K, and the true covariance may have an ar­
bitrary eigen-spectrum. The GenSVD algorithm below is a more general algorithm 
for correcting for the training set bias. 

2 The GenSVD Algorithm 

The data matrix consists of N statistically independent samples X = [Xl ... XN ] 

so X is size I x N, and each column of X is assumed multivariate Gaussian, 
Xj '" N(O,:E) and is ill-posed with rank:E > N. 

With the SVD X = UoAoVaT, we now make the approximation that Uo contains 
an actual subset of the true eigen-vectors of :E 

(9) 

where we have collected the remaining (unspanned by X) eigen-vectors and values in 
UJ. and Ai , satisfying uluJ. = I and UJUJ. = 0. The unknown 'true' eigen-values 
corresponding to the observed eigen-vectors are collected in A = diag(Al, ... AN), 
which are the values we try to estimate in the following. 

It should be noted that a direct estimation of :E using f: = j;y X X T yields f: = 

j;yuoAoVaTVoAoUJ = j;yUoA~UJ, i.e., the nonzero eigen-vectors and values of f: 
is Uo and Ao. 

The distribution of test samples x* inside the space spanned by Uo is 

(10) 



The problem is that Uo and the examples Xj are not independent, so UJ Xj is 
biased, e.g. the SVD estimate -k A ~ of A 2 assigns all variance to lie within Uo. 

The GenSVD algorithm bypasses this problem by, for each example, computing 
a basis on all other examples, estimating the variances in A 2 in a leave-one-out 
manner. Consider 

(11) 

where we introduce the notation X_j for the matrix of all examples except the 
j'th, and this matrix is decomposed as X_j = B_jA_j lC;' The operation B_jB_; Xj 
projects the example onto the basis defined by the remaining examples, and back 
again, so it 'strips' off the part of signal space which is special for Xj which could 
be signal which does not generalize across examples. 

Since B_j and Xj are independent B-"J Xj has the same distribution as the projec­
tion of a test example x*, B_; x*. Thus, B_jB_; Xj and B_jB_; x* have the same 
distribution as well. Now, since span B_j=span X_j and span Uo=span [X_j Xj] we 
have that span B_j~span Uo so we see that Z j and U J B_jB-"J X* are identically dis­
tributed. This means that Zj has the covariance UJ B_jB-"J~B_jB_;Uo and using 
Eq. (9) and that ul B_j = 0 (since uluo = 0) we get 

(12) 

We note that this distribution is degenerate because the covariance is of rank N -l. 
For a sample Zj from the above distribution we have that 

UJ B_jB_;Uoz j = UJ B_jB_;UoUJ B_jB_; Xj = UJ B_jB_; Xj = Zj (13) 

As a second approximation, assume that the observed Zj are independent so that 
we can write the likelihood of A 

~ log [(27r)N/21(uJ B_J(B-"JUo)A2(UJ B_J(R;Uo)l l /2] 

+~ ~zJ (UJ B_J(B_;Uo)A -2(UJ B_j) (B-"JUo)zj 
j 

N ~ 2 1~ T 2 C + - log A· + - z· A - z· 2 J 2 J J 
j j 

(14) 

where we have used Eq. (13) and that the determinantl is approximated by IA21. 
This above expression is maximized when 

5.~ = ~ ~ Z~j' (15) 
j 

A T A A A 

The GenSVD of X is then X = UoAV ,A = diag(Al' ... , AN). 

In practice, using Eq. (11) directly to compute an SVD of the matrix X_j for each 
example is computationally demanding. It is possible to compute Zj in a more 
efficient two-level procedure with the following algorithm: 

Compute UOAoVOT = svd(X) and Qo = [qj] = AoVOT 

lSince Zj is degenerate, we define the likelihood over the space where Zj occur, i.e. the 
determinant in Eq. 14 should be read as 'the product of non-zero eigenvalues'. 



foreach j = L.N 

Compute B _;A_; v..; = svd( Q.J 
Zj = B_;B-"J qj 

A2 1 2 '\ = Iii L: j Zij 

If the data has a mean value that we wish to remove prior to the SVD it is important 
that this is done within the GenSVD algorithm. Consider a centered matrix Xc = 
X - X where X contains the mean x replicated in all N columns. The signal space 
in Xc is now corrupted because each centered example will contain a component 
of all examples, which means the 'stripping' of signal components not spanned by 
other examples no longer works: B_; Xj is no longer distributed like B_; x*. This 
suggests the alternative algorithm for data with removal of mean component: 

Compute UOAoVOT = svd(X) and Qo = [qj] = AoVOT 

foreach j = L.N 
- 1 '"" q-j = N-1 6j'¥j qj' 

T -
Compute B _;A_; v..; = svd(Q_; - Q.;) 

Zj = B_;B-"J (qj - ii-j) 
A2 _ 1 2 
Ai - N -1 L: j Zij 

Finally, note that it is possible to leave out more than one example at a time if the 
data is independent only in block, i.e. let Q.k would be Qo with the k'th block left 
out. 

Example With PET Scans 

We compared the performance of GenSVD to conventional SVD on a functional 
[150] water PET activation study of the human brain. The study consisted of 
18 subjects, who were scanned four times while tracing a star-shaped maze with 
a joy-stick with visual feedback, in total 72 scans of dimension '" 25000 spatial 
voxels. After the second scan, the visual feedback was mirrored, and the subject 
accomodated to and learned the new control environment during the last two scans. 
Scans were normalized by 1) dividing each scan by the average voxel value measured 
inside a brain mask and 2) for each scan subtracting the average scan for that sub­
ject thereby removing subject effects and 3) intra and inter-subject normalization 
and transformation using rigid body reorientation and affine linear transformations 
respectively. Voxels inside aforementioned brain mask were arranged in the data 
matrix with one scan per column. 

Figure 1 shows the results of an SVD decomposition compared to GenSVD. Each 
marker represents one scan and the glyphs indicate scan number out of the four 
(circle-square-star-triangle). The ellipses indicate the mean and covariances of the 
projections in each scan number. The 32 scans from eight subjects were used as a 
training set and 40 scans from the remaining 10 subjects for testing. The training 
set projections are filled markers, test-set projections onto the basis defined by the 
training set are open markers (i.e. we plot the first two columns of UoAo for SVD 
and of UoA for GenSVD). We see that there is a clear difference in variance in the 
train- and test-examples, which is corrected quite well by GenSVD. The lower plot 
in Figure 1 shows the singular values for the PET data set. We see that GenSVD 
estimates are much closer to the actual test projection standard deviations than the 
SVD singular values. 



3 Conclusion 

We have demonstrated that projection of ill-posed data sets onto a basis defined 
by the same examples introduces a significant bias on the observed variance when 
comparing to projections of test examples onto the same basis. The GenSVD algo­
rithm has been presented as a tool for correcting for this bias using a leave-one-out 
re-estimation scheme, and a computationally efficient implementation has been pro­
posed. 

We have demonstrated that the method works well on an ill-posed real-world data 
set, were the distribution of the GenSVD-corrected training test set projections 
matched the distribution of the observed test set projections far better than the 
uncorrected training examples. This allows a generalization performance increase 
of a subsequent statistical model, in the case of both supervised and unsupervised 
models. 
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Figure 1: Projections of PET data in SVD and GenSVD. Each subject's four scans 
are indicated by: circle, square, star, triangle. Training set scans are marked with 
filled glyphs and test set with open glyphs. Solid and dotted Ellipses indicate 
test/train covariance per scan number. The third plot shows the standard deviations 
for the training and test set for SVD and GenSVD projections. 


