
Sparse Kernel
Principal Component Analysis

Michael E. Tipping
Microsoft Research

St George House, 1 Guildhall St
Cambridge CB2 3NH, U.K.
mtipping~microsoft.com

Abstract

'Kernel' principal component analysis (PCA) is an elegant non­
linear generalisation of the popular linear data analysis method,
where a kernel function implicitly defines a nonlinear transforma­
tion into a feature space wherein standard PCA is performed. Un­
fortunately, the technique is not 'sparse', since the components
thus obtained are expressed in terms of kernels associated with ev­
ery training vector. This paper shows that by approximating the
covariance matrix in feature space by a reduced number of exam­
ple vectors, using a maximum-likelihood approach, we may obtain
a highly sparse form of kernel PCA without loss of effectiveness.

1 Introduction

Principal component analysis (PCA) is a well-established technique for dimension­
ality reduction, and examples of its many applications include data compression,
image processing, visualisation, exploratory data analysis, pattern recognition and
time series prediction. Given a set of N d-dimensional data vectors X n , which we
take to have zero mean, the principal components are the linear projections onto
the 'principal axes', defined as the leading eigenvectors of the sample covariance
matrix S = N-1Z=:=lXnX~ = N-1XTX, where X = (Xl,X2, ... ,XN)T is the
conventionally-defined 'design' matrix. These projections are of interest as they
retain maximum variance and minimise error of subsequent linear reconstruction.

However, because PCA only defines a linear projection of the data, the scope of
its application is necessarily somewhat limited. This has naturally motivated vari­
ous developments of nonlinear 'principal component analysis' in an effort to model
non-trivial data structures more faithfully, and a particularly interesting recent in­
novation has been 'kernel PCA' [4].

Kernel PCA, summarised in Section 2, makes use of the 'kernel trick', so effectively
exploited by the 'support vector machine', in that a kernel function k(·,·) may
be considered to represent a dot (inner) product in some transformed space if it
satisfies Mercer's condition - i.e. if it is the continuous symmetric kernel of a
positive integral operator. This can be an elegant way to 'non-linearise' linear

procedures which depend only on inner products of the examples.

Applications utilising kernel PCA are emerging [2], but in practice the approach
suffers from one important disadvantage in that it is not a sparse method. Com­
putation of principal component projections for a given input x requires evaluation
of the kernel function k(x, xn) in respect of all N 'training' examples Xn. This is
an unfortunate limitation as in practice, to obtain the best model, we would like to
estimate the kernel principal components from as much data as possible.

Here we tackle this problem by first approximating the covariance matrix in feature
space by a subset of outer products of feature vectors, using a maximum-likelihood
criterion based on a 'probabilistic PCA' model detailed in Section 3. Subsequently
applying (kernel) PCA defines sparse projections. Importantly, the approximation
we adopt is principled and controllable, and is related to the choice of the number of
components to 'discard' in the conventional approach. We demonstrate its efficacy
in Section 4 and illustrate how it can offer similar performance to a full non-sparse
kernel PCA implementation while offering much reduced computational overheads.

2 Kernel peA

Although PCA is conventionally defined (as above) in terms of the covariance, or
outer-product, matrix, it is well-established that the eigenvectors of XTX can be
obtained from those of the inner-product matrix XXT. If V is an orthogonal ma­
trix of column eigenvectors of XXT with corresponding eigenvalues in the diagonal
matrix A, then by definition (XXT)V = VA. Pre-multiplying by X T gives:

(XTX)(XTV) = (XTV)A. (1)
From inspection, it can be seen that the eigenvectors of XTX are XTV, with eigen­
values A. Note, however, that the column vectors XTV are not normalised since
for column i, llTXXTlli = AillTlli = Ai, so the correctly normalised eigenvectors of

1
XTX, and thus the principal axes of the data, are given by Vpca = XTVA -'.

This derivation is useful if d > N, when the dimensionality of x is greater than
the number of examples, but it is also fundamental for implementing kernel PCA.
In kernel PCA, the data vectors Xn are implicitly mapped into a feature space by
a set of functions {ifJ} : Xn -+ 4>(xn). Although the vectors 4>n = 4>(xn) in the
feature space are generally not known explicitly, their inner products are defined
by the kernel: 4>-:n4>n = k(xm, xn). Defining cp as the (notional) design matrix in
feature space, and exploiting the above inner-product PCA formulation, allows the
eigenvectors of the covariance matrix in feature spacel , S4> = N- l L:n 4>n4>~, to be
specified as:

1
Vkpca=cpTVA-', (2)

where V, A are the eigenvectors/values of the kernel matrix K, with (K)mn =
k(xm,xn). Although we can't compute Vkpca since we don't know cp explicitly, we
can compute projections of arbitrary test vectors x* -+ 4>* onto Vkpca in feature
space:

4>~Vkpca = 4>~cpTVA -~ = k~VA-~, (3)
where k* is the N -vector of inner products of x* with the data in kernel space:
(k)n = k(x*,xn). We can thus compute, and plot, these projections - Figure 1
gives an example for some synthetic 3-cluster data in two dimensions.

lHere, and in the rest of the paper, we do not 'centre' the data in feature space,
although this may be achieved if desired (see [4]). In fact, we would argue that when using
a Gaussian kernel, it does not necessarily make sense to do so.

0.218 0 .203 0 .191

.' .'

-.I.- :fe···
:!.'-:~ '"F . .

0.057 0 .053 0 .051

~~: ~ .. -..- : . ..
0.047 0 .043

~.I:.' .
. ' . . " . .

0.036

Figure 1: Contour plots of the first nine principal component projections evaluated over a
region of input space for data from 3 Gaussian clusters (standard deviation 0.1; axis scales
are shown in Figure 3) each comprising 30 vectors. A Gaussian kernel, exp(-lIx-x'112 /r2),
with width r = 0.25, was used. The corresponding eigenvalues are given above each
projection. Note how the first three components 'pick out' the individual clusters [4].

3 Probabilistic Feature-Space peA

Our approach to sparsifying kernel peA is to a priori approximate the feature space
sample covariance matrix Sq, with a sum of weighted outer products of a reduced
number of feature vectors. (The basis of this technique is thus general and its
application not necessarily limited to kernel peA.) This is achieved probabilistically,
by maximising the likelihood of the feature vectors under a Gaussian density model
¢ ~ N(O, C) , where we specify the covariance C by:

N

C = (721 + L Wi¢i¢r = (721 + c)TWC), (4)
i=1

where W1 ... WN are the adjustable weights, W is a matrix with those weights on
the diagonal, and (72 is an isotropic 'noise' component common to all dimensions
of feature space. Of course, a naive maximum of the likelihood under this model
is obtained with (72 = a and all Wi = 1/ N. However, if we fix (72, and optimise
only the weighting factors Wi, we will find that the maximum-likelihood estimates
of many Wi are zero, thus realising a sparse representation of the covariance matrix.

This probabilistic approach is motivated by the fact that if we relax the form of the
model, by defining it in terms of outer products of N arbitrary vectors Vi (rather
than the fixed training vectors), i.e. C = (721+ l:~1 WiViV'[, then we realise a form
of 'probabilistic peA' [6]. That is, if {Ui' Ai} are the set of eigenvectors/values of Sq"
then the likelihood under this model is maximised by Vi = Ui and Wi = (Ai _(72)1/2,

for those i for which Ai > (72. For Ai :::; (72, the most likely weights Wi are zero.

3.1 Computations in feature space

We wish to maximise the likelihood under a Gaussian model with covariance given
by (4). Ignoring terms independent of the weighting parameters, its log is given by:

(5)

Computing (5) requires the quantities ICI and (VC-1rP, which for infinite dimen­
sionality feature spaces might appear problematic. However, by judicious re-writing
of the terms of interest, we are able to both compute the log-likelihood (to within
a constant) and optimise it with respect to the weights. First, we can write:

log 1(T21 + 4)TW4) I = D log (T2 + log IW-1 + (T-24)4)TI + log IWI. (6)

The potential problem of infinite dimensionality, D, of the feature space now en­
ters only in the first term, which is constant if (T2 is fixed and so does not affect
maximisation. The term in IWI is straightforward and the remaining term can be
expressed in terms of the inner-product (kernel) matrix:

W-1 + (T-24)4)T = W-1 + (T-2K,

where K is the kernel matrix such that (K)mn = k(xm , xn).

(7)

For the data-dependent term in the likelihood, we can use the Woodbury matrix
inversion identity to compute the quantities rP~C-lrPn:

rP~((T21 + 4)W4)T)-lrPn = rP~ [(T-21 - (T-44)(W-1 + (T-24)T4»)-14)TJ rPn'
= (T-2k(xn, xn) - (T-4k~(W-l + (T-2K)-lkn ,

with kn = [k(xn, xt), k(xn, X2), ... ,k(xn, XN)r·

3.2 Optimising the weights

(8)

To maximise the log-likelihood with respect to the Wi, differentiating (5) gives us:

{)C = ! (A.TC-14)T4)C-1A.. _ NA.TC-1A..) (9)
{)Wi 2 '1', '1', '1', '1'"

= 2~2 (t M~i + N};,ii - NWi) , (10)
, n=l

where};, and I-Ln are defined respectively by

};, = (W-1 + (T-2K)-1,

I-Ln = (T-2};'kn .

Setting (10) to zero gives re-estimation equations for the weights:

N

new N-1 '"" 2 + ~ Wi = ~ Mni L<ii·
n=l

(11)

(12)

(13)

The re-estimates (13) are equivalent to expectation-maximisation updates, which
would be obtained by adopting a factor analytic perspective [3], and introducing a
set of 'hidden' Gaussian explanatory variables whose conditional means and com­
mon covariance, given the feature vectors and the current values of the weights,
are given by I-Ln and};, respectively (hence the notation). As such, (13) is guar­
anteed to increase C unless it is already at a maximum. However, an alternative

re-arrangement of (10), motivated by [5], leads to a re-estimation update which
typically converges significantly more quickly:

",N 2
W new = L....n-l JJni (14)

, N(1 - ~idwi)·

Note that these Wi updates (14) are defined in terms of the computable (i.e. not
dependent on explicit feature space vectors) quantities ~ and /Ln.

3.3 Principal component analysis

The principal axes

Sparse kernel peA proceeds by finding the principal axes of the covariance model
C = (721 + c)TWc). These are identical to those of c)TWc), but with eigenvalues

.-... 1 .-...T

all (72 larger. Letting c) = W2c), then, we need the eigenvectors of c) c).

Using the technique of Section 2, if the eigenvectors of ~~T = W!c)c)TW! =
W!KW! are U, with corresponding eigenvalues X, then the eigevectors/values
{U, A} of C that we desire are given by:

Computing projections

(15)

(16)

Again, we can't compute the eigenvectors U explicitly in (15), but we can compute
the projections of a general feature vector cPo onto the principal axes:

(17)

where k. is the sparse vector containing the non-zero weighted elements of k.,
1

defined earlier. The corresponding rows of W!UX-2 are combined into a sin-
gle projecting matrix P, each column of which gives the coefficients of the kernel
functions for the evaluation of each principal component.

3.4 Computing Reconstruction Error

The squared reconstruction error in kernel space for a test vector cPo is given by:

(18)

with K the kernel matrix evaluated only for the representing vectors.

4 Examples

To obtain sparse kernel peA projections, we first specify the noise variance (72,

which is the the amount of variance per co-ordinate that we are prepared to allow
to be explained by the (structure-free) isotropic noise rather than with the principal
axes (this choice is a surrogate for deciding how many principal axes to retain in
conventional kernel peA). Unfortunately, the measure is in feature space, which
makes it rather more difficult to interpret than if it were in data space (equally so,
of course, for interpretation of the eigenvalue spectrum in the non-sparse case).

We apply sparse kernel peA to the Gaussian data of Figure 1 earlier, with the same
kernel function and specifying (J' = 0.25, deliberately chosen to give nine representing
kernels so as to facilitate comparison. Figure 2 shows the nine principal component
projections based on the approximated covariance matrix, and gives qualitatively
equivalent results to Figure 1 while utilising only 10% of the kernels. Figure 3 shows
the data and highlights those examples corresponding to the nine kernels with non­
zero weights. Note, although we do not consider this aspect further here, that these
representing vectors are themselves highly informative of the structure of the data
(i. e. with a Gaussian kernel, for example, they tend to represent distinguishable
clusters). Also in Figure 3, contours of reconstruction error, based only on those
nine kernels, are plotted and indicate that the nonlinear model has more faithfully
captured the structure of the data than would standard linear peA.

0.199

00

o
o -.0

OJ:
°l'or

•

•• 2t. rc. 0 0

0.082

0.074

0.184 0.161

0.074 0.074

0.072 0.071

Figure 2: The nine principal component projections obtained by sparse kernel peA.

To further illustrate the fidelity of the sparse approximation, we analyse the 200
training examples of the 7-dimensional 'Pima Indians diabetes' database [1]. Fig­
ure 4 (left) shows a plot of reconstruction error against the number of principal
components utilised by both conventional kernel peA and its sparse counterpart,
with (J'2 chosen so as to utilise 20% of the kernels (40). An expected small reduc­
tion in accuracy is evident in the sparse case. Figure 4 (right) shows the error on
the associated test set when using a linear support vector machine to classify the
data based on those numbers of principal components. Here the sparse projections
actually perform marginally better on average, a consequence of both randomness
and, we note with interest, presumably some inherent complexity control implied
by the use of a sparse approximation.

Figure 3: The data with the nine representing kernels circled and contours of reconstruc­
tion error (computed in feature space although displayed as a function of x) overlaid.

~ 100

C e
.Q 0.15 ffi
t5 Q) 2 (/)

t5 0.1
t5

80
C
0 Q)

~ 0.05
I-

70
a:

0 60
0 5 10 15 20 25 0 5 10 15 20 25

Figure 4: RMS reconstruction error (left) and test set misclassifications (right) for num­
bers ofretained principal components ranging from 1- 25. For the standard case, this was
based on all 200 training examples, for the sparse form, a subset of 40. A Gaussian kernel
of width 10 was utilised, which gives near-optimal results if used in an SVM classification.

References

[1] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge, 1996.

[2] S. Romdhani, S. Gong, and A. Psarrou. A multi-view nonlinear active shape model
using kernel PCA. In Proceedings of the 1999 British Machine Vision Conference,
pages 483- 492, 1999.

[3] D. B. Rubin and D. T. Thayer. EM algorithms for ML factor analysis. Psychometrika,
47(1):69- 76, 1982.

[4] B. Sch6lkopf, A. Smola, and K-R. Miiller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10:1299- 1319, 1998. Technical Report No.
44, 1996, Max Planck Institut fiir biologische Kybernetik, Tiibingen.

[5] M. E. Tipping. The Relevance Vector Machine. In S. A. Solla, T. KLeen, and K-R.
Miiller, editors, Advances in Neural Information Processing Systems 12, pages 652- 658.
Cambridge, Mass: MIT Press, 2000.

[6] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal
of the Royal Statistical Society, Series B, 61(3):611-622, 1999.

